Export Ready — 

Möbius gyrogroups: a Clifford algebra approach

Bibliographic Details
Main Author: Ferreira, Milton
Publication Date: 2011
Other Authors: Ren, G.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.8/3817
Summary: Using the Clifford algebra formalism we study the Möbius gyrogroup of the ball of radius t of the paravector space, where V is a finite-dimensional real vector space. We characterize all the gyro-subgroups of the Möbius gyrogroup and we construct left and right factorizations with respect to an arbitrary gyro-subgroup for the paravector ball. The geometric and algebraic properties of the equivalence classes are investigated. We show that the equivalence classes locate in a k-dimensional sphere, where k is the dimension of the gyro-subgroup, and the resulting quotient spaces are again Möbius gyrogroups. With the algebraic structure of the factorizations, we study the sections of Möbius fiber bundles inherited by the Möbius projectors.
id RCAP_aa61dd4c051f3fd775a2cc8ecd677a4c
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/3817
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Möbius gyrogroups: a Clifford algebra approachMöbius gyrogroupsMöbius projectorsQuotient Möbius gyrogroupsMöbius fiber bundlesUsing the Clifford algebra formalism we study the Möbius gyrogroup of the ball of radius t of the paravector space, where V is a finite-dimensional real vector space. We characterize all the gyro-subgroups of the Möbius gyrogroup and we construct left and right factorizations with respect to an arbitrary gyro-subgroup for the paravector ball. The geometric and algebraic properties of the equivalence classes are investigated. We show that the equivalence classes locate in a k-dimensional sphere, where k is the dimension of the gyro-subgroup, and the resulting quotient spaces are again Möbius gyrogroups. With the algebraic structure of the factorizations, we study the sections of Möbius fiber bundles inherited by the Möbius projectors.ElsevierRepositório IC-OnlineFerreira, MiltonRen, G.2019-02-07T15:27:13Z2011-022011-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3817eng0021-8693https://doi.org/10.1016/j.jalgebra.2010.05.014info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:09:40Zoai:iconline.ipleiria.pt:10400.8/3817Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:48:43.188465Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Möbius gyrogroups: a Clifford algebra approach
title Möbius gyrogroups: a Clifford algebra approach
spellingShingle Möbius gyrogroups: a Clifford algebra approach
Ferreira, Milton
Möbius gyrogroups
Möbius projectors
Quotient Möbius gyrogroups
Möbius fiber bundles
title_short Möbius gyrogroups: a Clifford algebra approach
title_full Möbius gyrogroups: a Clifford algebra approach
title_fullStr Möbius gyrogroups: a Clifford algebra approach
title_full_unstemmed Möbius gyrogroups: a Clifford algebra approach
title_sort Möbius gyrogroups: a Clifford algebra approach
author Ferreira, Milton
author_facet Ferreira, Milton
Ren, G.
author_role author
author2 Ren, G.
author2_role author
dc.contributor.none.fl_str_mv Repositório IC-Online
dc.contributor.author.fl_str_mv Ferreira, Milton
Ren, G.
dc.subject.por.fl_str_mv Möbius gyrogroups
Möbius projectors
Quotient Möbius gyrogroups
Möbius fiber bundles
topic Möbius gyrogroups
Möbius projectors
Quotient Möbius gyrogroups
Möbius fiber bundles
description Using the Clifford algebra formalism we study the Möbius gyrogroup of the ball of radius t of the paravector space, where V is a finite-dimensional real vector space. We characterize all the gyro-subgroups of the Möbius gyrogroup and we construct left and right factorizations with respect to an arbitrary gyro-subgroup for the paravector ball. The geometric and algebraic properties of the equivalence classes are investigated. We show that the equivalence classes locate in a k-dimensional sphere, where k is the dimension of the gyro-subgroup, and the resulting quotient spaces are again Möbius gyrogroups. With the algebraic structure of the factorizations, we study the sections of Möbius fiber bundles inherited by the Möbius projectors.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
2011-02-01T00:00:00Z
2019-02-07T15:27:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/3817
url http://hdl.handle.net/10400.8/3817
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0021-8693
https://doi.org/10.1016/j.jalgebra.2010.05.014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598886676004864