A relative theory of universal central extensions
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | |
Format: | Other |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/11178 |
Summary: | Basing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects. |
id |
RCAP_aa581c080d170ba67d26c9f4dbb05386 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/11178 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A relative theory of universal central extensionsCategorical Galois theorySemi-abelian categoryHomologyPerfect objectCommutatorBaer invariantBirkhoff subcategoryBasing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects.Ministerio de Educacion y Ciencia under grant number MTM2006-15338-C02-02 (includes European FEDER support), by project Ingenio Mathematica (i-MATH) under grant number CSD2006-00032 (Consolider Ingenio 2010); Xunta de Galicia under grant number PGIDITI06PXIB371128PR; CMUC; FCTCentro de Matemática da Universidade de Coimbra2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11178https://hdl.handle.net/10316/11178engPré-Publicações DMUC. 09-10 (2009)Casas, José ManuelLinden, Tim Van derinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:11:13Zoai:estudogeral.uc.pt:10316/11178Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:16.584740Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A relative theory of universal central extensions |
title |
A relative theory of universal central extensions |
spellingShingle |
A relative theory of universal central extensions Casas, José Manuel Categorical Galois theory Semi-abelian category Homology Perfect object Commutator Baer invariant Birkhoff subcategory |
title_short |
A relative theory of universal central extensions |
title_full |
A relative theory of universal central extensions |
title_fullStr |
A relative theory of universal central extensions |
title_full_unstemmed |
A relative theory of universal central extensions |
title_sort |
A relative theory of universal central extensions |
author |
Casas, José Manuel |
author_facet |
Casas, José Manuel Linden, Tim Van der |
author_role |
author |
author2 |
Linden, Tim Van der |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Casas, José Manuel Linden, Tim Van der |
dc.subject.por.fl_str_mv |
Categorical Galois theory Semi-abelian category Homology Perfect object Commutator Baer invariant Birkhoff subcategory |
topic |
Categorical Galois theory Semi-abelian category Homology Perfect object Commutator Baer invariant Birkhoff subcategory |
description |
Basing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/11178 https://hdl.handle.net/10316/11178 |
url |
https://hdl.handle.net/10316/11178 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pré-Publicações DMUC. 09-10 (2009) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602338851389440 |