Export Ready — 

A relative theory of universal central extensions

Bibliographic Details
Main Author: Casas, José Manuel
Publication Date: 2009
Other Authors: Linden, Tim Van der
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11178
Summary: Basing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects.
id RCAP_aa581c080d170ba67d26c9f4dbb05386
oai_identifier_str oai:estudogeral.uc.pt:10316/11178
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A relative theory of universal central extensionsCategorical Galois theorySemi-abelian categoryHomologyPerfect objectCommutatorBaer invariantBirkhoff subcategoryBasing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects.Ministerio de Educacion y Ciencia under grant number MTM2006-15338-C02-02 (includes European FEDER support), by project Ingenio Mathematica (i-MATH) under grant number CSD2006-00032 (Consolider Ingenio 2010); Xunta de Galicia under grant number PGIDITI06PXIB371128PR; CMUC; FCTCentro de Matemática da Universidade de Coimbra2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11178https://hdl.handle.net/10316/11178engPré-Publicações DMUC. 09-10 (2009)Casas, José ManuelLinden, Tim Van derinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:11:13Zoai:estudogeral.uc.pt:10316/11178Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:16.584740Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A relative theory of universal central extensions
title A relative theory of universal central extensions
spellingShingle A relative theory of universal central extensions
Casas, José Manuel
Categorical Galois theory
Semi-abelian category
Homology
Perfect object
Commutator
Baer invariant
Birkhoff subcategory
title_short A relative theory of universal central extensions
title_full A relative theory of universal central extensions
title_fullStr A relative theory of universal central extensions
title_full_unstemmed A relative theory of universal central extensions
title_sort A relative theory of universal central extensions
author Casas, José Manuel
author_facet Casas, José Manuel
Linden, Tim Van der
author_role author
author2 Linden, Tim Van der
author2_role author
dc.contributor.author.fl_str_mv Casas, José Manuel
Linden, Tim Van der
dc.subject.por.fl_str_mv Categorical Galois theory
Semi-abelian category
Homology
Perfect object
Commutator
Baer invariant
Birkhoff subcategory
topic Categorical Galois theory
Semi-abelian category
Homology
Perfect object
Commutator
Baer invariant
Birkhoff subcategory
description Basing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11178
https://hdl.handle.net/10316/11178
url https://hdl.handle.net/10316/11178
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 09-10 (2009)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602338851389440