Use of computer vision and machine learning for the analysis of solar rotation profile
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/178096 |
Summary: | With the unprecedented growth of solar images provided by recent missions, there is a growing necessity to harness the benefits they may offer. Using images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument, this project employs state-of-the-art computer vision techniques to study solar differential rotation. Coronal Bright Points (CBPs), identified as small bright spots in the solar corona, serve as tracers across multiple images due to their distribution across all latitudes, independence from the solar cycle, and distinctiveness compared to other solar activities. Moreover, all CBPs share a similar shape, facilitating their detection and tracking. In the detection process, an image matching algorithm was employed, proving its reliability across various stages of the solar cycle. In the future, this tool could be improved by integrating Machine Learning, as post-processing method, to eliminate false positive CBP identifications. Computer vision techniques were also utilised to discern whether a CBP is inside or outside a Coronal Hole. Solar rotation values were calculated based on the movements of CBPs during their lifetime as a result of the performed tracking. Given the importance of this topic, it was created a website to display the information about the solar differential rotation, as well as data on the CBPs and Coronal Holes. This website is supported by a robust database where processed image data is stored, acting as a bridge between the detection and tracking tools and the user interface. This infrastructure enables the presentation of information to the user in near real-time. This tool’s performance results are also showcased, including its outcomes at various stages of the solar cycle. Specifically, these results are highlighted during periods of both low solar activity and high solar activity. |
| id |
RCAP_a91f71be7fd47ca468cf060386c46ad8 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/178096 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Use of computer vision and machine learning for the analysis of solar rotation profileComputer visionImage processingMatch TemplateCoronal Bright PointsSolar differential rotationSolar cycleDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaWith the unprecedented growth of solar images provided by recent missions, there is a growing necessity to harness the benefits they may offer. Using images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument, this project employs state-of-the-art computer vision techniques to study solar differential rotation. Coronal Bright Points (CBPs), identified as small bright spots in the solar corona, serve as tracers across multiple images due to their distribution across all latitudes, independence from the solar cycle, and distinctiveness compared to other solar activities. Moreover, all CBPs share a similar shape, facilitating their detection and tracking. In the detection process, an image matching algorithm was employed, proving its reliability across various stages of the solar cycle. In the future, this tool could be improved by integrating Machine Learning, as post-processing method, to eliminate false positive CBP identifications. Computer vision techniques were also utilised to discern whether a CBP is inside or outside a Coronal Hole. Solar rotation values were calculated based on the movements of CBPs during their lifetime as a result of the performed tracking. Given the importance of this topic, it was created a website to display the information about the solar differential rotation, as well as data on the CBPs and Coronal Holes. This website is supported by a robust database where processed image data is stored, acting as a bridge between the detection and tracking tools and the user interface. This infrastructure enables the presentation of information to the user in near real-time. This tool’s performance results are also showcased, including its outcomes at various stages of the solar cycle. Specifically, these results are highlighted during periods of both low solar activity and high solar activity.Com o aumento sem precedentes de imagens solares fornecidas por missões recentes, há uma necessidade crescente de aproveitar os benefícios que elas podem oferecer. Uti- lizando imagens do instrumento Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), este trabalho empregatécnicas de Computer Vision para estudar a rotação diferencial solar, com o objetivo de obter resultados mais precisos. Os Coronal Bright Points (CBPs), identificados como pequenos pontos brilhantes na coroa solar, servem como pontos de referência nas imagens devido à sua distribuição em todas as latitudes, independência do ciclo solar e distinção em relação a outras actividades solares. Além disso, todos os CBPs partilham uma forma semelhante, facilitando a sua deteção e seguimento. No processo de deteção dos CBPs, foi utilizado um algoritmo de correspondência de padrões (Match Template) em imagens, que mostrou a sua fiabilidade em várias fases do ciclo solar. No futuro, este processo pode ser melhorado integrando Machine Learning como um método de eliminação de deteções falsas positivas. Também foram utilizadas técnicas de processamento de imagem para discernir se um CBP está dentro ou fora de um Buraco Coronal. Os valores de rotação solar foram calculados com base nos movimentos de CBPs durante o seu tempo de vida, como resultado do rastreio efectuado. Dada a importância deste tema, foi criado um website para apresentar a informação sobre a rotação diferencial solar, bem como dados sobre os CBPs e os Buracos Coronais. Este site é suportado por uma base de dados onde são armazenados os dados das imagens processadas, servindo de ponte entre as ferramentas de deteção e rastreio e a interface com o utilizador. Esta infraestrutura permite a apresentação da informação ao utilizador quase em tempo real. São também apresentados os resultados da deteção e do rastreio desta ferramenta, in- cluindo os seus resultados em várias fases do ciclo solar. Especificamente, estes resultados são destacados durante os períodos de baixa atividade solar e de alta atividade solar.Mora, AndréRUNFigueira, Francisco Correia de Berquó2025-01-29T16:19:58Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/178096enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-03T01:37:47Zoai:run.unl.pt:10362/178096Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:45:51.302649Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| title |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| spellingShingle |
Use of computer vision and machine learning for the analysis of solar rotation profile Figueira, Francisco Correia de Berquó Computer vision Image processing Match Template Coronal Bright Points Solar differential rotation Solar cycle Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| title_short |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| title_full |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| title_fullStr |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| title_full_unstemmed |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| title_sort |
Use of computer vision and machine learning for the analysis of solar rotation profile |
| author |
Figueira, Francisco Correia de Berquó |
| author_facet |
Figueira, Francisco Correia de Berquó |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Mora, André RUN |
| dc.contributor.author.fl_str_mv |
Figueira, Francisco Correia de Berquó |
| dc.subject.por.fl_str_mv |
Computer vision Image processing Match Template Coronal Bright Points Solar differential rotation Solar cycle Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| topic |
Computer vision Image processing Match Template Coronal Bright Points Solar differential rotation Solar cycle Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| description |
With the unprecedented growth of solar images provided by recent missions, there is a growing necessity to harness the benefits they may offer. Using images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument, this project employs state-of-the-art computer vision techniques to study solar differential rotation. Coronal Bright Points (CBPs), identified as small bright spots in the solar corona, serve as tracers across multiple images due to their distribution across all latitudes, independence from the solar cycle, and distinctiveness compared to other solar activities. Moreover, all CBPs share a similar shape, facilitating their detection and tracking. In the detection process, an image matching algorithm was employed, proving its reliability across various stages of the solar cycle. In the future, this tool could be improved by integrating Machine Learning, as post-processing method, to eliminate false positive CBP identifications. Computer vision techniques were also utilised to discern whether a CBP is inside or outside a Coronal Hole. Solar rotation values were calculated based on the movements of CBPs during their lifetime as a result of the performed tracking. Given the importance of this topic, it was created a website to display the information about the solar differential rotation, as well as data on the CBPs and Coronal Holes. This website is supported by a robust database where processed image data is stored, acting as a bridge between the detection and tracking tools and the user interface. This infrastructure enables the presentation of information to the user in near real-time. This tool’s performance results are also showcased, including its outcomes at various stages of the solar cycle. Specifically, these results are highlighted during periods of both low solar activity and high solar activity. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 2024-01-01T00:00:00Z 2025-01-29T16:19:58Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/178096 |
| url |
http://hdl.handle.net/10362/178096 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598312592179200 |