Genetic programming for structural similarity design at multiple spatial scales
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/141872 |
Summary: | Bakurov, I., Buzzelli, M., Castelli, M., Schettini, R., & Vanneschi, L. (2022). Genetic programming for structural similarity design at multiple spatial scales. In GECCO ’22. Proceedings of the 2022 Genetic and Evolutionary Computation Conference (pp. 911-919). (GECCO 2022 - The Genetic and Evolutionary Computation Conference, July 9-13, Boston, US). Association for Computing Machinery (ACM). ISBN 978-1-4503-9237-2/22/07 ---- Funding Information: FCT Portugal partially supported this work, under the grand SFRH/BD/137277/2018, and through projects BINDER (PTDC/CCI-INF/29168/2017) and AICE (DSAIPA/DS/ 0113/2019). |
id |
RCAP_a725864af09a79c05d1b35b145196c0a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/141872 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Genetic programming for structural similarity design at multiple spatial scalesGenetic ProgrammingImage Quality AssessmentStructural SimilarityMulti-Scale Structural Similarity IndexDilated ConvolutionsSpatially-Varying KernelsMulti-Scale ContextMulti-Scale ProcessingEvolutionary ComputationImage ProcessingArtificial IntelligenceSoftwareTheoretical Computer ScienceBakurov, I., Buzzelli, M., Castelli, M., Schettini, R., & Vanneschi, L. (2022). Genetic programming for structural similarity design at multiple spatial scales. In GECCO ’22. Proceedings of the 2022 Genetic and Evolutionary Computation Conference (pp. 911-919). (GECCO 2022 - The Genetic and Evolutionary Computation Conference, July 9-13, Boston, US). Association for Computing Machinery (ACM). ISBN 978-1-4503-9237-2/22/07 ---- Funding Information: FCT Portugal partially supported this work, under the grand SFRH/BD/137277/2018, and through projects BINDER (PTDC/CCI-INF/29168/2017) and AICE (DSAIPA/DS/ 0113/2019).The growing production of digital content and its dissemination across the worldwide web require eficient and precise management. In this context, image quality assessment measures (IQAMs) play a pivotal role in guiding the development of numerous image processing systems for compression, enhancement, and restoration. The structural similarity index (SSIM) is one of the most common IQAMs for estimating the similarity between a pristine reference image and its corrupted variant. The multi-scale SSIM is one of its most popular variants that allows assessing image quality at multiple spatial scales. This paper proposes a two-stage genetic programming (GP) approach to evolve novel multi-scale IQAMs, that are simultaneously more effective and efficient. We use GP to perform feature selection in the first stage, while the second stage generates the final solutions. The experimental results show that the proposed approach outperforms the existing MS-SSIM. A comprehensive analysis of the feature selection indicates that, for extracting multi-scale similarities, spatially-varying convolutions are more effective than dilated convolutions. Moreover, we provide evidence that the IQAMs learned for one database can be successfully transferred to previously unseen databases. We conclude the paper by presenting a set of evolved multi-scale IQAMs and providing their interpretation.ACM - Association for Computing MachineryInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBakurov, IllyaBuzzelli, MarcoCastelli, MauroSchettini, RaimondoVanneschi, Leonardo2022-07-14T22:14:54Z2022-07-012022-07-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion9application/pdfhttp://hdl.handle.net/10362/141872eng978-1-4503-9327-2PURE: 45372673https://doi.org/10.1145/3512290.3528783info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-22T01:36:30Zoai:run.unl.pt:10362/141872Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:34:16.412303Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Genetic programming for structural similarity design at multiple spatial scales |
title |
Genetic programming for structural similarity design at multiple spatial scales |
spellingShingle |
Genetic programming for structural similarity design at multiple spatial scales Bakurov, Illya Genetic Programming Image Quality Assessment Structural Similarity Multi-Scale Structural Similarity Index Dilated Convolutions Spatially-Varying Kernels Multi-Scale Context Multi-Scale Processing Evolutionary Computation Image Processing Artificial Intelligence Software Theoretical Computer Science |
title_short |
Genetic programming for structural similarity design at multiple spatial scales |
title_full |
Genetic programming for structural similarity design at multiple spatial scales |
title_fullStr |
Genetic programming for structural similarity design at multiple spatial scales |
title_full_unstemmed |
Genetic programming for structural similarity design at multiple spatial scales |
title_sort |
Genetic programming for structural similarity design at multiple spatial scales |
author |
Bakurov, Illya |
author_facet |
Bakurov, Illya Buzzelli, Marco Castelli, Mauro Schettini, Raimondo Vanneschi, Leonardo |
author_role |
author |
author2 |
Buzzelli, Marco Castelli, Mauro Schettini, Raimondo Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Bakurov, Illya Buzzelli, Marco Castelli, Mauro Schettini, Raimondo Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Genetic Programming Image Quality Assessment Structural Similarity Multi-Scale Structural Similarity Index Dilated Convolutions Spatially-Varying Kernels Multi-Scale Context Multi-Scale Processing Evolutionary Computation Image Processing Artificial Intelligence Software Theoretical Computer Science |
topic |
Genetic Programming Image Quality Assessment Structural Similarity Multi-Scale Structural Similarity Index Dilated Convolutions Spatially-Varying Kernels Multi-Scale Context Multi-Scale Processing Evolutionary Computation Image Processing Artificial Intelligence Software Theoretical Computer Science |
description |
Bakurov, I., Buzzelli, M., Castelli, M., Schettini, R., & Vanneschi, L. (2022). Genetic programming for structural similarity design at multiple spatial scales. In GECCO ’22. Proceedings of the 2022 Genetic and Evolutionary Computation Conference (pp. 911-919). (GECCO 2022 - The Genetic and Evolutionary Computation Conference, July 9-13, Boston, US). Association for Computing Machinery (ACM). ISBN 978-1-4503-9237-2/22/07 ---- Funding Information: FCT Portugal partially supported this work, under the grand SFRH/BD/137277/2018, and through projects BINDER (PTDC/CCI-INF/29168/2017) and AICE (DSAIPA/DS/ 0113/2019). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-14T22:14:54Z 2022-07-01 2022-07-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/141872 |
url |
http://hdl.handle.net/10362/141872 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-4503-9327-2 PURE: 45372673 https://doi.org/10.1145/3512290.3528783 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9 application/pdf |
dc.publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596800827654144 |