Export Ready — 

Laguerre derivative and monogenic Laguerre polynomials: an operational approach

Bibliographic Details
Main Author: Cação, Isabel
Publication Date: 2011
Other Authors: Falcão, Maria Irene, Malonek, Helmuth Robert
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15315
Summary: Hypercomplex function theory generalizes the theory of holomorphic functions of one complex variable by using Clifford Algebras and provides the fundamentals of Clifford Analysis as a refinement of Harmonic Analysis in higher dimensions. We define the Laguerre derivative operator in hypercomplex context and by using operational techniques we construct generalized hypercomplex monogenic Laguerre polynomials. Moreover, Laguerre-type exponentials of order mm are defined.
id RCAP_a6bc8eb7bdf2b2234d03c28aca1c3c68
oai_identifier_str oai:ria.ua.pt:10773/15315
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Laguerre derivative and monogenic Laguerre polynomials: an operational approachGeneralized Laguerre polynomialsExponential operatorsFunctions of hypercomplex variablesHypercomplex function theory generalizes the theory of holomorphic functions of one complex variable by using Clifford Algebras and provides the fundamentals of Clifford Analysis as a refinement of Harmonic Analysis in higher dimensions. We define the Laguerre derivative operator in hypercomplex context and by using operational techniques we construct generalized hypercomplex monogenic Laguerre polynomials. Moreover, Laguerre-type exponentials of order mm are defined.Elsevier2016-03-16T15:51:16Z2011-03-01T00:00:00Z2011-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15315eng0895-717710.1016/j.mcm.2010.11.071Cação, IsabelFalcão, Maria IreneMalonek, Helmuth Robertinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:16Zoai:ria.ua.pt:10773/15315Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:33.576263Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Laguerre derivative and monogenic Laguerre polynomials: an operational approach
title Laguerre derivative and monogenic Laguerre polynomials: an operational approach
spellingShingle Laguerre derivative and monogenic Laguerre polynomials: an operational approach
Cação, Isabel
Generalized Laguerre polynomials
Exponential operators
Functions of hypercomplex variables
title_short Laguerre derivative and monogenic Laguerre polynomials: an operational approach
title_full Laguerre derivative and monogenic Laguerre polynomials: an operational approach
title_fullStr Laguerre derivative and monogenic Laguerre polynomials: an operational approach
title_full_unstemmed Laguerre derivative and monogenic Laguerre polynomials: an operational approach
title_sort Laguerre derivative and monogenic Laguerre polynomials: an operational approach
author Cação, Isabel
author_facet Cação, Isabel
Falcão, Maria Irene
Malonek, Helmuth Robert
author_role author
author2 Falcão, Maria Irene
Malonek, Helmuth Robert
author2_role author
author
dc.contributor.author.fl_str_mv Cação, Isabel
Falcão, Maria Irene
Malonek, Helmuth Robert
dc.subject.por.fl_str_mv Generalized Laguerre polynomials
Exponential operators
Functions of hypercomplex variables
topic Generalized Laguerre polynomials
Exponential operators
Functions of hypercomplex variables
description Hypercomplex function theory generalizes the theory of holomorphic functions of one complex variable by using Clifford Algebras and provides the fundamentals of Clifford Analysis as a refinement of Harmonic Analysis in higher dimensions. We define the Laguerre derivative operator in hypercomplex context and by using operational techniques we construct generalized hypercomplex monogenic Laguerre polynomials. Moreover, Laguerre-type exponentials of order mm are defined.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-01T00:00:00Z
2011-03
2016-03-16T15:51:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15315
url http://hdl.handle.net/10773/15315
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0895-7177
10.1016/j.mcm.2010.11.071
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594137130041344