Export Ready — 

Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states

Bibliographic Details
Main Author: Melo, Luís D. R.
Publication Date: 2012
Other Authors: Oliveira, Fernando, Sillankorva, Sanna, Pérez-Cabezas, B., Vilanova, Manuel, Azeredo, Joana, Cerca, Nuno
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/28543
Summary: Staphylococcus epidermidis has recently become known as a usual cause of nosocomial infections, predominantly in patients with indwelling medical devices. Although, S. epidermidis infections only rarely develop into life-threatening diseases, they are very frequent and difficult to treat due to the ability of this bacterium to adhere to the surfaces of indwelling medical devices and form biofilms. When S. epidermidis cells are in a biofilm they are more resistant to antibiotics and to the immune system. The importance of biofilms in the pathogenesis of the S. epidermidis infections is becoming more understandable, consequently several studies are needed, in order to develop effective methods for biofilm control. The use of bacteriophages (phages) to eradicate biofilms can be seen as a potentially valuable approach. Phages are virus that infect bacteria and are the most abundant organisms on Earth. They are generally very efficient antibacterial agents and possess many advantages over antibiotics. Our aim is to search for virulent phages with broad host range for S. epidermidis biofilm therapy. Using wastewater treatment plants raw effluents we were able to isolate 5 phages. Their lytic activity was screened against 40 clinical S. epidermidis isolates with different genetic profiles and it was found to be different ranging from 46% to 95% of positive results. Further morphologic and genetic characterization of these isolated phages is now being performed. Efficacy studies results show that phage phiIBB-Sep1 is able to cause a 6 Log CFU/ml reduction of the cell titre in <2h for some of the clinical strains at exponential phase and in <4h for stationary phase cells (using a MOI of 1). This phage has also the capacity of reducing by up to 2 Log CFU/ml 24h biofilm cells and in some strains it was observed 50% cell reduction on biofilms. Besides CFU counting, all the cell counts were confirmed by flow cytometry assays. Additionally, flow cytometry allow the observation that this phage kill cells under different metabolic states from the biofilm. Work developed with non biofilm forming strains showed that possibly PNAG might be the cell receptor of the phage. The high amounts of PNAG on biofilms, might the lower activity of this phage on biofilms. These are promising results, since phage phiIBB-Se1 presents a broad host range and ability to control S. epidermidis under different metabolic states. Ongoing studies are being performed with 4 other phages, with the purpose of developing a phage cocktail to be used against S. epidermidis biofilm infections.
id RCAP_a6a54c02cdc33f05e040af303f1c2d3b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/28543
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic statesS. epidermidis biofilmsAntimicrobial resistancePhage therapyStaphylococcus epidermidis has recently become known as a usual cause of nosocomial infections, predominantly in patients with indwelling medical devices. Although, S. epidermidis infections only rarely develop into life-threatening diseases, they are very frequent and difficult to treat due to the ability of this bacterium to adhere to the surfaces of indwelling medical devices and form biofilms. When S. epidermidis cells are in a biofilm they are more resistant to antibiotics and to the immune system. The importance of biofilms in the pathogenesis of the S. epidermidis infections is becoming more understandable, consequently several studies are needed, in order to develop effective methods for biofilm control. The use of bacteriophages (phages) to eradicate biofilms can be seen as a potentially valuable approach. Phages are virus that infect bacteria and are the most abundant organisms on Earth. They are generally very efficient antibacterial agents and possess many advantages over antibiotics. Our aim is to search for virulent phages with broad host range for S. epidermidis biofilm therapy. Using wastewater treatment plants raw effluents we were able to isolate 5 phages. Their lytic activity was screened against 40 clinical S. epidermidis isolates with different genetic profiles and it was found to be different ranging from 46% to 95% of positive results. Further morphologic and genetic characterization of these isolated phages is now being performed. Efficacy studies results show that phage phiIBB-Sep1 is able to cause a 6 Log CFU/ml reduction of the cell titre in <2h for some of the clinical strains at exponential phase and in <4h for stationary phase cells (using a MOI of 1). This phage has also the capacity of reducing by up to 2 Log CFU/ml 24h biofilm cells and in some strains it was observed 50% cell reduction on biofilms. Besides CFU counting, all the cell counts were confirmed by flow cytometry assays. Additionally, flow cytometry allow the observation that this phage kill cells under different metabolic states from the biofilm. Work developed with non biofilm forming strains showed that possibly PNAG might be the cell receptor of the phage. The high amounts of PNAG on biofilms, might the lower activity of this phage on biofilms. These are promising results, since phage phiIBB-Se1 presents a broad host range and ability to control S. epidermidis under different metabolic states. Ongoing studies are being performed with 4 other phages, with the purpose of developing a phage cocktail to be used against S. epidermidis biofilm infections.Universidade do MinhoMelo, Luís D. R.Oliveira, FernandoSillankorva, SannaPérez-Cabezas, B.Vilanova, ManuelAzeredo, JoanaCerca, Nuno20122012-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/28543enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:40:02Zoai:repositorium.sdum.uminho.pt:1822/28543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:00:35.297594Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
title Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
spellingShingle Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
Melo, Luís D. R.
S. epidermidis biofilms
Antimicrobial resistance
Phage therapy
title_short Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
title_full Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
title_fullStr Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
title_full_unstemmed Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
title_sort Efficacy studies of phage phiIBB-Sep1 against S. epidermidis cells under different metabolic states
author Melo, Luís D. R.
author_facet Melo, Luís D. R.
Oliveira, Fernando
Sillankorva, Sanna
Pérez-Cabezas, B.
Vilanova, Manuel
Azeredo, Joana
Cerca, Nuno
author_role author
author2 Oliveira, Fernando
Sillankorva, Sanna
Pérez-Cabezas, B.
Vilanova, Manuel
Azeredo, Joana
Cerca, Nuno
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Melo, Luís D. R.
Oliveira, Fernando
Sillankorva, Sanna
Pérez-Cabezas, B.
Vilanova, Manuel
Azeredo, Joana
Cerca, Nuno
dc.subject.por.fl_str_mv S. epidermidis biofilms
Antimicrobial resistance
Phage therapy
topic S. epidermidis biofilms
Antimicrobial resistance
Phage therapy
description Staphylococcus epidermidis has recently become known as a usual cause of nosocomial infections, predominantly in patients with indwelling medical devices. Although, S. epidermidis infections only rarely develop into life-threatening diseases, they are very frequent and difficult to treat due to the ability of this bacterium to adhere to the surfaces of indwelling medical devices and form biofilms. When S. epidermidis cells are in a biofilm they are more resistant to antibiotics and to the immune system. The importance of biofilms in the pathogenesis of the S. epidermidis infections is becoming more understandable, consequently several studies are needed, in order to develop effective methods for biofilm control. The use of bacteriophages (phages) to eradicate biofilms can be seen as a potentially valuable approach. Phages are virus that infect bacteria and are the most abundant organisms on Earth. They are generally very efficient antibacterial agents and possess many advantages over antibiotics. Our aim is to search for virulent phages with broad host range for S. epidermidis biofilm therapy. Using wastewater treatment plants raw effluents we were able to isolate 5 phages. Their lytic activity was screened against 40 clinical S. epidermidis isolates with different genetic profiles and it was found to be different ranging from 46% to 95% of positive results. Further morphologic and genetic characterization of these isolated phages is now being performed. Efficacy studies results show that phage phiIBB-Sep1 is able to cause a 6 Log CFU/ml reduction of the cell titre in <2h for some of the clinical strains at exponential phase and in <4h for stationary phase cells (using a MOI of 1). This phage has also the capacity of reducing by up to 2 Log CFU/ml 24h biofilm cells and in some strains it was observed 50% cell reduction on biofilms. Besides CFU counting, all the cell counts were confirmed by flow cytometry assays. Additionally, flow cytometry allow the observation that this phage kill cells under different metabolic states from the biofilm. Work developed with non biofilm forming strains showed that possibly PNAG might be the cell receptor of the phage. The high amounts of PNAG on biofilms, might the lower activity of this phage on biofilms. These are promising results, since phage phiIBB-Se1 presents a broad host range and ability to control S. epidermidis under different metabolic states. Ongoing studies are being performed with 4 other phages, with the purpose of developing a phage cocktail to be used against S. epidermidis biofilm infections.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/28543
url http://hdl.handle.net/1822/28543
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595678670979072