Study of the magnification effect on self-organizing maps

Detalhes bibliográficos
Autor(a) principal: Bastos, Edson Giovanni Gonçalves da Cunha Moreira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.26/38107
Resumo: Self-Organizing Maps (SOM), are a type of neuronal network (Kohonen, 1982b) that has been used mainly in data clustering problems, using unsupervised learning. Among the multiple areas of application, SOM has been used in various problems of direct interest to the Navy (V. J. Lobo, 2009), including route planning and the location of critical infrastructures. The SOM has also been used to sample large databases. In this sort of application, they have a behaviour called the magnification effect (Bauer & Der, 1996), which causes areas of the attribute space of data with less density to be overrepresented or magnified. This dissertation uses an experimental approach to mitigate the lack of theoretical explanation for this effect except for one-dimensional and quite simple cases. From experimental evidence obtained for carefully designed problems we infer a relationship between input data densities and output neuron densities that can be applied universally, or at least in a broad set of situations. A large number of experiments were conducted using one-dimensional to one-dimensional mappings followed by 2D to 2D, 3D to 1, 2 and 3D. We derived an empirical relationship whereby the density in the output space is equal to a constant times the density of the input space raised to the power of (alpha) which although depending on a number of factors can be approximated by the root index n of 2/3 where n is the input space dimension. The correlation that we found in our experiments, for both the well-known 1- dimensional case and for more general 2 to 3-dimensional cases is a useful guide to predict the magnification effect in practical situations.Therefore, in chapter 4 we produce a populational cartogram of Angola and we prove that our relation can be used to correct the magnification effect on 2-dimensional cases.
id RCAP_a69f9adf1a4e721da021509742198d46
oai_identifier_str oai:comum.rcaap.pt:10400.26/38107
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Study of the magnification effect on self-organizing mapsSelf-organized mapsneural networksmagnification effectdata scienceMapas auto-organizadosRedes neuronaisEfeito de magnificaçãoCiência de dadosSelf-Organizing Maps (SOM), are a type of neuronal network (Kohonen, 1982b) that has been used mainly in data clustering problems, using unsupervised learning. Among the multiple areas of application, SOM has been used in various problems of direct interest to the Navy (V. J. Lobo, 2009), including route planning and the location of critical infrastructures. The SOM has also been used to sample large databases. In this sort of application, they have a behaviour called the magnification effect (Bauer & Der, 1996), which causes areas of the attribute space of data with less density to be overrepresented or magnified. This dissertation uses an experimental approach to mitigate the lack of theoretical explanation for this effect except for one-dimensional and quite simple cases. From experimental evidence obtained for carefully designed problems we infer a relationship between input data densities and output neuron densities that can be applied universally, or at least in a broad set of situations. A large number of experiments were conducted using one-dimensional to one-dimensional mappings followed by 2D to 2D, 3D to 1, 2 and 3D. We derived an empirical relationship whereby the density in the output space is equal to a constant times the density of the input space raised to the power of (alpha) which although depending on a number of factors can be approximated by the root index n of 2/3 where n is the input space dimension. The correlation that we found in our experiments, for both the well-known 1- dimensional case and for more general 2 to 3-dimensional cases is a useful guide to predict the magnification effect in practical situations.Therefore, in chapter 4 we produce a populational cartogram of Angola and we prove that our relation can be used to correct the magnification effect on 2-dimensional cases.Lobo, Vítor SousaGorricha, Jorge Manuel LourençoRepositório ComumBastos, Edson Giovanni Gonçalves da Cunha Moreira2021-11-29T14:08:35Z2021-092021-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/38107urn:tid:202784410enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-03T16:32:58Zoai:comum.rcaap.pt:10400.26/38107Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:12:56.616608Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Study of the magnification effect on self-organizing maps
title Study of the magnification effect on self-organizing maps
spellingShingle Study of the magnification effect on self-organizing maps
Bastos, Edson Giovanni Gonçalves da Cunha Moreira
Self-organized maps
neural networks
magnification effect
data science
Mapas auto-organizados
Redes neuronais
Efeito de magnificação
Ciência de dados
title_short Study of the magnification effect on self-organizing maps
title_full Study of the magnification effect on self-organizing maps
title_fullStr Study of the magnification effect on self-organizing maps
title_full_unstemmed Study of the magnification effect on self-organizing maps
title_sort Study of the magnification effect on self-organizing maps
author Bastos, Edson Giovanni Gonçalves da Cunha Moreira
author_facet Bastos, Edson Giovanni Gonçalves da Cunha Moreira
author_role author
dc.contributor.none.fl_str_mv Lobo, Vítor Sousa
Gorricha, Jorge Manuel Lourenço
Repositório Comum
dc.contributor.author.fl_str_mv Bastos, Edson Giovanni Gonçalves da Cunha Moreira
dc.subject.por.fl_str_mv Self-organized maps
neural networks
magnification effect
data science
Mapas auto-organizados
Redes neuronais
Efeito de magnificação
Ciência de dados
topic Self-organized maps
neural networks
magnification effect
data science
Mapas auto-organizados
Redes neuronais
Efeito de magnificação
Ciência de dados
description Self-Organizing Maps (SOM), are a type of neuronal network (Kohonen, 1982b) that has been used mainly in data clustering problems, using unsupervised learning. Among the multiple areas of application, SOM has been used in various problems of direct interest to the Navy (V. J. Lobo, 2009), including route planning and the location of critical infrastructures. The SOM has also been used to sample large databases. In this sort of application, they have a behaviour called the magnification effect (Bauer & Der, 1996), which causes areas of the attribute space of data with less density to be overrepresented or magnified. This dissertation uses an experimental approach to mitigate the lack of theoretical explanation for this effect except for one-dimensional and quite simple cases. From experimental evidence obtained for carefully designed problems we infer a relationship between input data densities and output neuron densities that can be applied universally, or at least in a broad set of situations. A large number of experiments were conducted using one-dimensional to one-dimensional mappings followed by 2D to 2D, 3D to 1, 2 and 3D. We derived an empirical relationship whereby the density in the output space is equal to a constant times the density of the input space raised to the power of (alpha) which although depending on a number of factors can be approximated by the root index n of 2/3 where n is the input space dimension. The correlation that we found in our experiments, for both the well-known 1- dimensional case and for more general 2 to 3-dimensional cases is a useful guide to predict the magnification effect in practical situations.Therefore, in chapter 4 we produce a populational cartogram of Angola and we prove that our relation can be used to correct the magnification effect on 2-dimensional cases.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-29T14:08:35Z
2021-09
2021-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/38107
urn:tid:202784410
url http://hdl.handle.net/10400.26/38107
identifier_str_mv urn:tid:202784410
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602618089275392