Forecasting electricity prices
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/99133 |
Summary: | Castelli, M., Groznik, A., & Popovič, A. (2020). Forecasting electricity prices: A machine learning approach. Algorithms, 13(5), 1-16. [119]. https://doi.org/10.3390/A13050119 |
id |
RCAP_a55f3f1af7488aa24b6e99343390bc4b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/99133 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Forecasting electricity pricesA machine learning approachBased programmingElectricity pricesEnergy sectorForecastingGeometric semanticMachine learningTheoretical Computer ScienceNumerical AnalysisComputational Theory and MathematicsComputational MathematicsCastelli, M., Groznik, A., & Popovič, A. (2020). Forecasting electricity prices: A machine learning approach. Algorithms, 13(5), 1-16. [119]. https://doi.org/10.3390/A13050119The electricity market is a complex, evolutionary, and dynamic environment. Forecasting electricity prices is an important issue for all electricity market participants. In this study, we shed light on how to improve electricity price forecasting accuracy through the use of a machine learning technique-namely, a novel genetic programming approach. Drawing on empirical data from the largest EU energy markets, we propose a forecasting model that considers variables related to weather conditions, oil prices, and CO2 coupons and predicts energy prices 24 h ahead. We show that the proposed model provides more accurate predictions of future electricity prices than existing prediction methods. Our important findings will assist the electricity market participants in forecasting future price movements.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroGroznik, AlešPopovič, Aleš2020-06-10T00:45:03Z2020-05-082020-05-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/99133eng1999-4893PURE: 18512056https://doi.org/10.3390/A13050119info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:45:57Zoai:run.unl.pt:10362/99133Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:17:16.824180Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Forecasting electricity prices A machine learning approach |
title |
Forecasting electricity prices |
spellingShingle |
Forecasting electricity prices Castelli, Mauro Based programming Electricity prices Energy sector Forecasting Geometric semantic Machine learning Theoretical Computer Science Numerical Analysis Computational Theory and Mathematics Computational Mathematics |
title_short |
Forecasting electricity prices |
title_full |
Forecasting electricity prices |
title_fullStr |
Forecasting electricity prices |
title_full_unstemmed |
Forecasting electricity prices |
title_sort |
Forecasting electricity prices |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Groznik, Aleš Popovič, Aleš |
author_role |
author |
author2 |
Groznik, Aleš Popovič, Aleš |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Groznik, Aleš Popovič, Aleš |
dc.subject.por.fl_str_mv |
Based programming Electricity prices Energy sector Forecasting Geometric semantic Machine learning Theoretical Computer Science Numerical Analysis Computational Theory and Mathematics Computational Mathematics |
topic |
Based programming Electricity prices Energy sector Forecasting Geometric semantic Machine learning Theoretical Computer Science Numerical Analysis Computational Theory and Mathematics Computational Mathematics |
description |
Castelli, M., Groznik, A., & Popovič, A. (2020). Forecasting electricity prices: A machine learning approach. Algorithms, 13(5), 1-16. [119]. https://doi.org/10.3390/A13050119 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-10T00:45:03Z 2020-05-08 2020-05-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/99133 |
url |
http://hdl.handle.net/10362/99133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1999-4893 PURE: 18512056 https://doi.org/10.3390/A13050119 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596583650787328 |