Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/62865 |
Summary: | Uniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour. |
| id |
RCAP_a464de0432c4ecbbc7570b7f020523aa |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/62865 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious bindersApproche basée sur des données pour prédire la résistance à la compression non confinée des sols stabilisés en laboratoire avec des liants à base de cimentSoil-cement mixturesJet groutingDeep soil mixingSoft computingSensitivity analysisEngenharia e Tecnologia::Engenharia CivilUniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour.La résistance en compression uniaxiale (qu) des sols stabilisés avec liants à base de ciment est un élément très important pour le projet. Toutefois, sa mesure nécessite des essais intensifs en laboratoire, qui demande du temps et des ressources. Pour permettre un processus plus rapide et moins cher, ce travail présente une nouvelle approche pour l’estimation de qu des sols stabilisés avec des liants à base de ciment, basée sur des techniques informatiques, (en particulier) "Support Vector Machines" (SVMs) et "Artificial Neural Networks" (ANNs). Les modèles sont utilisés avec une base de données comprenant des 444 données, englobant sols non cohésifs, cohésifs et organiques, différents types des liants, différents conditions de mélange et des temps de durcissement. Les résultats montrent une performance prometteuse dans la prédiction de qu avec des mélanges de sol-ciment préparés en laboratoire, et les meilleurs résultats sont obtenus avec le modèle SVM ( ଶ = 0.94). En complément, avec la moyenne de SVM et ANN sont obtenus prédictions avec une précision légèrement meilleure ( ଶ = 0.95). Avec l’implémentation d’une analyse de sensibilité sur les modèles utilisés, on mesure l’importance relative des attributs de chaque modèle, qui a souligné l’importance du rapport eau/ciment, le teneur du ciment, le teneur de la matière organique et le temps de durcissement, qui sont connu comme les plus prépondérant dans le comportement de mélanges de sol-ciment.This work was supported by FCT – “Fundação para a Ciência e a Tecnologia“, within ISISE, project UID/ECI/04029/2013, and within CIEPQPF, project EQB/UI0102/2014, as well Project Scope: UID/CEC/00319/2013 and through the post-doctoral Grant fellowship with reference SFRH/BPD/94792/2013. This work was also partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT within the scope of the projects POCI-01-0145-FEDER-007633, POCI-01-0145- FEDER-007043 and POCI-01-0145-FEDER028382Icelandic Geotechnical SocietyUniversidade do MinhoTinoco, Joaquim Agostinho BarbosaAlberto, A.Oliveira, P. J. VendaLemos, L.Correia, A. Gomes2019-09-062019-09-06T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/62865engTinoco, J., Alberto, A., Venda Oliveira, P., Gomes Correia, A., Lemos, L., Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders, XVII European Conference on Soil Mechanics and Geotechnical Engineering (XVII ECSMGE-2019), Reykjavík, Island, p. 1-8 (2019).978-9935-9436-1-310.32075/17ECSMGE-2019-0598info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:14:58Zoai:repositorium.sdum.uminho.pt:1822/62865Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:46:13.044237Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders Approche basée sur des données pour prédire la résistance à la compression non confinée des sols stabilisés en laboratoire avec des liants à base de ciment |
| title |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| spellingShingle |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders Tinoco, Joaquim Agostinho Barbosa Soil-cement mixtures Jet grouting Deep soil mixing Soft computing Sensitivity analysis Engenharia e Tecnologia::Engenharia Civil |
| title_short |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| title_full |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| title_fullStr |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| title_full_unstemmed |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| title_sort |
Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders |
| author |
Tinoco, Joaquim Agostinho Barbosa |
| author_facet |
Tinoco, Joaquim Agostinho Barbosa Alberto, A. Oliveira, P. J. Venda Lemos, L. Correia, A. Gomes |
| author_role |
author |
| author2 |
Alberto, A. Oliveira, P. J. Venda Lemos, L. Correia, A. Gomes |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Tinoco, Joaquim Agostinho Barbosa Alberto, A. Oliveira, P. J. Venda Lemos, L. Correia, A. Gomes |
| dc.subject.por.fl_str_mv |
Soil-cement mixtures Jet grouting Deep soil mixing Soft computing Sensitivity analysis Engenharia e Tecnologia::Engenharia Civil |
| topic |
Soil-cement mixtures Jet grouting Deep soil mixing Soft computing Sensitivity analysis Engenharia e Tecnologia::Engenharia Civil |
| description |
Uniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-09-06 2019-09-06T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/62865 |
| url |
http://hdl.handle.net/1822/62865 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Tinoco, J., Alberto, A., Venda Oliveira, P., Gomes Correia, A., Lemos, L., Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders, XVII European Conference on Soil Mechanics and Geotechnical Engineering (XVII ECSMGE-2019), Reykjavík, Island, p. 1-8 (2019). 978-9935-9436-1-3 10.32075/17ECSMGE-2019-0598 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Icelandic Geotechnical Society |
| publisher.none.fl_str_mv |
Icelandic Geotechnical Society |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595529720758272 |