Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders

Bibliographic Details
Main Author: Tinoco, Joaquim Agostinho Barbosa
Publication Date: 2019
Other Authors: Alberto, A., Oliveira, P. J. Venda, Lemos, L., Correia, A. Gomes
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/62865
Summary: Uniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour.
id RCAP_a464de0432c4ecbbc7570b7f020523aa
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/62865
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious bindersApproche basée sur des données pour prédire la résistance à la compression non confinée des sols stabilisés en laboratoire avec des liants à base de cimentSoil-cement mixturesJet groutingDeep soil mixingSoft computingSensitivity analysisEngenharia e Tecnologia::Engenharia CivilUniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour.La résistance en compression uniaxiale (qu) des sols stabilisés avec liants à base de ciment est un élément très important pour le projet. Toutefois, sa mesure nécessite des essais intensifs en laboratoire, qui demande du temps et des ressources. Pour permettre un processus plus rapide et moins cher, ce travail présente une nouvelle approche pour l’estimation de qu des sols stabilisés avec des liants à base de ciment, basée sur des techniques informatiques, (en particulier) "Support Vector Machines" (SVMs) et "Artificial Neural Networks" (ANNs). Les modèles sont utilisés avec une base de données comprenant des 444 données, englobant sols non cohésifs, cohésifs et organiques, différents types des liants, différents conditions de mélange et des temps de durcissement. Les résultats montrent une performance prometteuse dans la prédiction de qu avec des mélanges de sol-ciment préparés en laboratoire, et les meilleurs résultats sont obtenus avec le modèle SVM ( ଶ = 0.94). En complément, avec la moyenne de SVM et ANN sont obtenus prédictions avec une précision légèrement meilleure ( ଶ = 0.95). Avec l’implémentation d’une analyse de sensibilité sur les modèles utilisés, on mesure l’importance relative des attributs de chaque modèle, qui a souligné l’importance du rapport eau/ciment, le teneur du ciment, le teneur de la matière organique et le temps de durcissement, qui sont connu comme les plus prépondérant dans le comportement de mélanges de sol-ciment.This work was supported by FCT – “Fundação para a Ciência e a Tecnologia“, within ISISE, project UID/ECI/04029/2013, and within CIEPQPF, project EQB/UI0102/2014, as well Project Scope: UID/CEC/00319/2013 and through the post-doctoral Grant fellowship with reference SFRH/BPD/94792/2013. This work was also partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT within the scope of the projects POCI-01-0145-FEDER-007633, POCI-01-0145- FEDER-007043 and POCI-01-0145-FEDER028382Icelandic Geotechnical SocietyUniversidade do MinhoTinoco, Joaquim Agostinho BarbosaAlberto, A.Oliveira, P. J. VendaLemos, L.Correia, A. Gomes2019-09-062019-09-06T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/62865engTinoco, J., Alberto, A., Venda Oliveira, P., Gomes Correia, A., Lemos, L., Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders, XVII European Conference on Soil Mechanics and Geotechnical Engineering (XVII ECSMGE-2019), Reykjavík, Island, p. 1-8 (2019).978-9935-9436-1-310.32075/17ECSMGE-2019-0598info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:14:58Zoai:repositorium.sdum.uminho.pt:1822/62865Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:46:13.044237Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
Approche basée sur des données pour prédire la résistance à la compression non confinée des sols stabilisés en laboratoire avec des liants à base de ciment
title Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
spellingShingle Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
Tinoco, Joaquim Agostinho Barbosa
Soil-cement mixtures
Jet grouting
Deep soil mixing
Soft computing
Sensitivity analysis
Engenharia e Tecnologia::Engenharia Civil
title_short Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
title_full Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
title_fullStr Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
title_full_unstemmed Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
title_sort Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders
author Tinoco, Joaquim Agostinho Barbosa
author_facet Tinoco, Joaquim Agostinho Barbosa
Alberto, A.
Oliveira, P. J. Venda
Lemos, L.
Correia, A. Gomes
author_role author
author2 Alberto, A.
Oliveira, P. J. Venda
Lemos, L.
Correia, A. Gomes
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Tinoco, Joaquim Agostinho Barbosa
Alberto, A.
Oliveira, P. J. Venda
Lemos, L.
Correia, A. Gomes
dc.subject.por.fl_str_mv Soil-cement mixtures
Jet grouting
Deep soil mixing
Soft computing
Sensitivity analysis
Engenharia e Tecnologia::Engenharia Civil
topic Soil-cement mixtures
Jet grouting
Deep soil mixing
Soft computing
Sensitivity analysis
Engenharia e Tecnologia::Engenharia Civil
description Uniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time was compiled. The results show a promising performance in qu prediction of laboratory soil-cement mixtures, being the best results achieved with the SVM model (2 = 0.94). In addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (2 = 0.95). Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-06
2019-09-06T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/62865
url http://hdl.handle.net/1822/62865
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Tinoco, J., Alberto, A., Venda Oliveira, P., Gomes Correia, A., Lemos, L., Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders, XVII European Conference on Soil Mechanics and Geotechnical Engineering (XVII ECSMGE-2019), Reykjavík, Island, p. 1-8 (2019).
978-9935-9436-1-3
10.32075/17ECSMGE-2019-0598
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Icelandic Geotechnical Society
publisher.none.fl_str_mv Icelandic Geotechnical Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595529720758272