Export Ready — 

Supported ionic liquid materials for L-asparaginase bioconjugation

Bibliographic Details
Main Author: Nunes, João C. F.
Publication Date: 2021
Other Authors: Almeida, Mafalda R., Santos-Ebinuma, Valéria C., Neves, Márcia C., Freire, Mara G., Tavares, Ana P. M.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/32915
Summary: Since the average life expectancy is increasing, several fatal diseases usually related to aging, such as cancer, heart and neurological diseases have become predominant. Biopharmaceuticals, namely nucleic-acid-based products, antibodies, recombinant proteins and enzymes are fundamental to overcome these age-related diseases. Actually, the gold standard enzyme for the treatment of acute chronic lymphoblastic leukemia (ALL) is L-asparaginase (ASNase). Hence, the reusability of this high-priced drug enables the cost reduction of treatments, which allows its routinely use by a widespread population. In this work, functionalized nanomaterials, namely supported ionic liquid materials (SILs) based on silica, formerly described in the literature for the separation of natural compounds from vegetable biomass, were studied as a cost effective support for ASNase immobilization and reuse. Commercial ASNase was used for preliminary tests. Several experimental immobilization conditions, such as pH, contact time, ASNase concentration and SILs recyclability were assessed and optimized, regarding the immobilized ASNase activity, assessed by Nessler reaction, which quantifies the amount of ammonium released after the enzymatic reaction with L-asparagine and immobilization yield. In fact, ASNase immobilization onto the SILs was successfully achieved with an immobilized ASNase activity ranging from 0.6 to 0.9 U of enzyme per mg of SILs under the optimum immobilization conditions. Moreover, all SILs allowed 5 cycles of reaction, while keeping more than 75% of initial ASNase activity. Through the envisioned immobilization strategy, process costs will be considerably reduced, which can lead to a wider use of ASNase in diverse fields of application.
id RCAP_a27c256f094ca95336e08afe11b9836e
oai_identifier_str oai:ria.ua.pt:10773/32915
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Supported ionic liquid materials for L-asparaginase bioconjugationL-asparaginaseBioconjugationSupported ionic liquid materialsSince the average life expectancy is increasing, several fatal diseases usually related to aging, such as cancer, heart and neurological diseases have become predominant. Biopharmaceuticals, namely nucleic-acid-based products, antibodies, recombinant proteins and enzymes are fundamental to overcome these age-related diseases. Actually, the gold standard enzyme for the treatment of acute chronic lymphoblastic leukemia (ALL) is L-asparaginase (ASNase). Hence, the reusability of this high-priced drug enables the cost reduction of treatments, which allows its routinely use by a widespread population. In this work, functionalized nanomaterials, namely supported ionic liquid materials (SILs) based on silica, formerly described in the literature for the separation of natural compounds from vegetable biomass, were studied as a cost effective support for ASNase immobilization and reuse. Commercial ASNase was used for preliminary tests. Several experimental immobilization conditions, such as pH, contact time, ASNase concentration and SILs recyclability were assessed and optimized, regarding the immobilized ASNase activity, assessed by Nessler reaction, which quantifies the amount of ammonium released after the enzymatic reaction with L-asparagine and immobilization yield. In fact, ASNase immobilization onto the SILs was successfully achieved with an immobilized ASNase activity ranging from 0.6 to 0.9 U of enzyme per mg of SILs under the optimum immobilization conditions. Moreover, all SILs allowed 5 cycles of reaction, while keeping more than 75% of initial ASNase activity. Through the envisioned immobilization strategy, process costs will be considerably reduced, which can lead to a wider use of ASNase in diverse fields of application.Sociedade Portuguesa de Química2022-01-13T13:07:00Z2021-07-01T00:00:00Z2021-07conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/32915engNunes, João C. F.Almeida, Mafalda R.Santos-Ebinuma, Valéria C.Neves, Márcia C.Freire, Mara G.Tavares, Ana P. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:34:59Zoai:ria.ua.pt:10773/32915Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:13:14.628586Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Supported ionic liquid materials for L-asparaginase bioconjugation
title Supported ionic liquid materials for L-asparaginase bioconjugation
spellingShingle Supported ionic liquid materials for L-asparaginase bioconjugation
Nunes, João C. F.
L-asparaginase
Bioconjugation
Supported ionic liquid materials
title_short Supported ionic liquid materials for L-asparaginase bioconjugation
title_full Supported ionic liquid materials for L-asparaginase bioconjugation
title_fullStr Supported ionic liquid materials for L-asparaginase bioconjugation
title_full_unstemmed Supported ionic liquid materials for L-asparaginase bioconjugation
title_sort Supported ionic liquid materials for L-asparaginase bioconjugation
author Nunes, João C. F.
author_facet Nunes, João C. F.
Almeida, Mafalda R.
Santos-Ebinuma, Valéria C.
Neves, Márcia C.
Freire, Mara G.
Tavares, Ana P. M.
author_role author
author2 Almeida, Mafalda R.
Santos-Ebinuma, Valéria C.
Neves, Márcia C.
Freire, Mara G.
Tavares, Ana P. M.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Nunes, João C. F.
Almeida, Mafalda R.
Santos-Ebinuma, Valéria C.
Neves, Márcia C.
Freire, Mara G.
Tavares, Ana P. M.
dc.subject.por.fl_str_mv L-asparaginase
Bioconjugation
Supported ionic liquid materials
topic L-asparaginase
Bioconjugation
Supported ionic liquid materials
description Since the average life expectancy is increasing, several fatal diseases usually related to aging, such as cancer, heart and neurological diseases have become predominant. Biopharmaceuticals, namely nucleic-acid-based products, antibodies, recombinant proteins and enzymes are fundamental to overcome these age-related diseases. Actually, the gold standard enzyme for the treatment of acute chronic lymphoblastic leukemia (ALL) is L-asparaginase (ASNase). Hence, the reusability of this high-priced drug enables the cost reduction of treatments, which allows its routinely use by a widespread population. In this work, functionalized nanomaterials, namely supported ionic liquid materials (SILs) based on silica, formerly described in the literature for the separation of natural compounds from vegetable biomass, were studied as a cost effective support for ASNase immobilization and reuse. Commercial ASNase was used for preliminary tests. Several experimental immobilization conditions, such as pH, contact time, ASNase concentration and SILs recyclability were assessed and optimized, regarding the immobilized ASNase activity, assessed by Nessler reaction, which quantifies the amount of ammonium released after the enzymatic reaction with L-asparagine and immobilization yield. In fact, ASNase immobilization onto the SILs was successfully achieved with an immobilized ASNase activity ranging from 0.6 to 0.9 U of enzyme per mg of SILs under the optimum immobilization conditions. Moreover, all SILs allowed 5 cycles of reaction, while keeping more than 75% of initial ASNase activity. Through the envisioned immobilization strategy, process costs will be considerably reduced, which can lead to a wider use of ASNase in diverse fields of application.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-01T00:00:00Z
2021-07
2022-01-13T13:07:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32915
url http://hdl.handle.net/10773/32915
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Química
publisher.none.fl_str_mv Sociedade Portuguesa de Química
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594412949569536