Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD

Detalhes bibliográficos
Autor(a) principal: Shen, Jiajia
Data de Publicação: 2023
Outros Autores: Lopes, J. G., Zeng, Zhi, Choi, Yeon Taek, Maawad, E., Schell, N., Kim, Hyoung Seop, Mishra, Rajiv S., Oliveira, J. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/154388
Resumo: Funding Information: JS, JGL, and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). JGL acknowledges FCT – MCTES for funding the Ph.D. grant 2020.07350.BD. JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P. in the scope of the projects LA/P/0037/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210899 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872from the EU Framework Programme for Research and Innovation HORIZON 2020. HSK acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054). Yeon Taek Choi was supported by the Basic Science Research Program “Fostering the Next Generation of Researcher” through the NRF funded by the Ministry of Education [grant number 2022R1A6A3A13073824]. The raw/processed data required to reproduce the above findings cannot be shared at this time as the data also forms part of an ongoing study. Publisher Copyright: © 2023 The Authors
id RCAP_a22a3d03ffaf1d058b041f165175c00b
oai_identifier_str oai:run.unl.pt:10362/154388
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSDHigh entropy alloysIn-situ testingStrengthening mechanismsSynchrotron X-ray diffractionMaterials Science(all)Condensed Matter PhysicsMechanics of MaterialsMechanical EngineeringFunding Information: JS, JGL, and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). JGL acknowledges FCT – MCTES for funding the Ph.D. grant 2020.07350.BD. JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P. in the scope of the projects LA/P/0037/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210899 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872from the EU Framework Programme for Research and Innovation HORIZON 2020. HSK acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054). Yeon Taek Choi was supported by the Basic Science Research Program “Fostering the Next Generation of Researcher” through the NRF funded by the Ministry of Education [grant number 2022R1A6A3A13073824]. The raw/processed data required to reproduce the above findings cannot be shared at this time as the data also forms part of an ongoing study. Publisher Copyright: © 2023 The AuthorsIn this work, high energy synchrotron X-ray diffraction was used during tensile testing of an as-cast eutectic AlCoCrFeNi2.1 high entropy alloy. Aside, from determining for the first time the volume fractions of existing phases, we further detail their role on the alloy deformation behavior. The two major phases, a soft disordered FCC and a hard ordered B2 BCC, were observed to exhibit a stress partitioning effect which can be used to modulate the mechanical response of the material based on the relative volume fraction of each phase. Dislocation density analysis revealed that the soft FCC phase had a significantly higher dislocation density right after the onset of plastic deformation. This is attributed to the existence of strain gradients across the lamellar structure, where the hard B2 BCC prevents free deformation of the FCC phase. Nonetheless, despite the increase of the dislocation density in the soft FCC phase, calculations of the strengthening effects induced by generation of dislocations are more significant in the hard B2 BCC phases, as this phase is primarily responsible for the strength increase in the alloy. Besides, the evolutions in dislocation density of the soft FCC and hard B2 BCC phases during tensile deformation obtained from synchrotron X-ray diffraction data are consistent with the evolution of KAM determined by EBSD characterization. Also, lattice strain analysis across two principal directions (parallel and perpendicular to the loading axis) reveals that for these specific orientations there is a preferential deformation of the hard FCC planes which can be related to the deformation response of specific lattice planes at distinct orientations, as well as to the phase partitioning stress behavior.DEMI - Departamento de Engenharia Mecânica e IndustrialUNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e IndustrialCENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)DCM - Departamento de Ciência dos MateriaisRUNShen, JiajiaLopes, J. G.Zeng, ZhiChoi, Yeon TaekMaawad, E.Schell, N.Kim, Hyoung SeopMishra, Rajiv S.Oliveira, J. P.2023-06-24T22:16:01Z2023-05-082023-05-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/154388eng0921-5093PURE: 64500519https://doi.org/10.1016/j.msea.2023.144946info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:12:19Zoai:run.unl.pt:10362/154388Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:42:40.351710Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
title Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
spellingShingle Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
Shen, Jiajia
High entropy alloys
In-situ testing
Strengthening mechanisms
Synchrotron X-ray diffraction
Materials Science(all)
Condensed Matter Physics
Mechanics of Materials
Mechanical Engineering
title_short Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
title_full Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
title_fullStr Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
title_full_unstemmed Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
title_sort Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSD
author Shen, Jiajia
author_facet Shen, Jiajia
Lopes, J. G.
Zeng, Zhi
Choi, Yeon Taek
Maawad, E.
Schell, N.
Kim, Hyoung Seop
Mishra, Rajiv S.
Oliveira, J. P.
author_role author
author2 Lopes, J. G.
Zeng, Zhi
Choi, Yeon Taek
Maawad, E.
Schell, N.
Kim, Hyoung Seop
Mishra, Rajiv S.
Oliveira, J. P.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv DEMI - Departamento de Engenharia Mecânica e Industrial
UNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial
CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)
DCM - Departamento de Ciência dos Materiais
RUN
dc.contributor.author.fl_str_mv Shen, Jiajia
Lopes, J. G.
Zeng, Zhi
Choi, Yeon Taek
Maawad, E.
Schell, N.
Kim, Hyoung Seop
Mishra, Rajiv S.
Oliveira, J. P.
dc.subject.por.fl_str_mv High entropy alloys
In-situ testing
Strengthening mechanisms
Synchrotron X-ray diffraction
Materials Science(all)
Condensed Matter Physics
Mechanics of Materials
Mechanical Engineering
topic High entropy alloys
In-situ testing
Strengthening mechanisms
Synchrotron X-ray diffraction
Materials Science(all)
Condensed Matter Physics
Mechanics of Materials
Mechanical Engineering
description Funding Information: JS, JGL, and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). JGL acknowledges FCT – MCTES for funding the Ph.D. grant 2020.07350.BD. JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P. in the scope of the projects LA/P/0037/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210899 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872from the EU Framework Programme for Research and Innovation HORIZON 2020. HSK acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054). Yeon Taek Choi was supported by the Basic Science Research Program “Fostering the Next Generation of Researcher” through the NRF funded by the Ministry of Education [grant number 2022R1A6A3A13073824]. The raw/processed data required to reproduce the above findings cannot be shared at this time as the data also forms part of an ongoing study. Publisher Copyright: © 2023 The Authors
publishDate 2023
dc.date.none.fl_str_mv 2023-06-24T22:16:01Z
2023-05-08
2023-05-08T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/154388
url http://hdl.handle.net/10362/154388
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0921-5093
PURE: 64500519
https://doi.org/10.1016/j.msea.2023.144946
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596910680670208