Comparing Deep and Machine Learning Approaches in Bioinformatics
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/152619 |
Summary: | Giansanti, V., Castelli, M., Beretta, S., & Merelli, I. (2019). Comparing Deep and Machine Learning Approaches in Bioinformatics: A miRNA-Target Prediction Case Study. In V. V. Krzhizhanovskaya, M. H. Lees, P. M. A. Sloot, J. J. Dongarra, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, ... R. Lam (Eds.), Computational Science – ICCS 2019: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III (pp. 31-44). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11538 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22744-9_3 |
| id |
RCAP_a218a7f68eccc7ee6f462ca13b7e9959 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/152619 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Comparing Deep and Machine Learning Approaches in BioinformaticsA miRNA-Target Prediction Case StudyDeep learningMachine learningmiRNAmiRNA-target predictionTheoretical Computer ScienceComputer Science(all)Giansanti, V., Castelli, M., Beretta, S., & Merelli, I. (2019). Comparing Deep and Machine Learning Approaches in Bioinformatics: A miRNA-Target Prediction Case Study. In V. V. Krzhizhanovskaya, M. H. Lees, P. M. A. Sloot, J. J. Dongarra, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, ... R. Lam (Eds.), Computational Science – ICCS 2019: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III (pp. 31-44). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11538 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22744-9_3MicroRNAs (miRNAs) are small non-coding RNAs with a key role in the post-transcriptional gene expression regularization, thanks to their ability to link with the target mRNA through the complementary base pairing mechanism. Given their role, it is important to identify their targets and, to this purpose, different tools were proposed to solve this problem. However, their results can be very different, so the community is now moving toward the deployment of integration tools, which should be able to perform better than the single ones. As Machine and Deep Learning algorithms are now in their popular years, we developed different classifiers from both areas to verify their ability to recognize possible miRNA-mRNA interactions and evaluated their performance, showing the potentialities and the limits that those algorithms have in this field. Here, we apply two deep learning classifiers and three different machine learning models to two different miRNA-mRNA datasets, of predictions from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although an experimental validation of the results is needed to better confirm the predictions, deep learning techniques achieved the best performance when the evaluation scores are taken into account.Springer VerlagNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNGiansanti, ValentinaCastelli, MauroBeretta, StefanoMerelli, Ivan2023-05-11T22:03:31Z2019-01-012019-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion14application/pdfhttp://hdl.handle.net/10362/152619eng97830302274320302-9743PURE: 14032948https://doi.org/10.1007/978-3-030-22744-9_3info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:11:20Zoai:run.unl.pt:10362/152619Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:41:33.276472Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Comparing Deep and Machine Learning Approaches in Bioinformatics A miRNA-Target Prediction Case Study |
| title |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| spellingShingle |
Comparing Deep and Machine Learning Approaches in Bioinformatics Giansanti, Valentina Deep learning Machine learning miRNA miRNA-target prediction Theoretical Computer Science Computer Science(all) |
| title_short |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| title_full |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| title_fullStr |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| title_full_unstemmed |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| title_sort |
Comparing Deep and Machine Learning Approaches in Bioinformatics |
| author |
Giansanti, Valentina |
| author_facet |
Giansanti, Valentina Castelli, Mauro Beretta, Stefano Merelli, Ivan |
| author_role |
author |
| author2 |
Castelli, Mauro Beretta, Stefano Merelli, Ivan |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Giansanti, Valentina Castelli, Mauro Beretta, Stefano Merelli, Ivan |
| dc.subject.por.fl_str_mv |
Deep learning Machine learning miRNA miRNA-target prediction Theoretical Computer Science Computer Science(all) |
| topic |
Deep learning Machine learning miRNA miRNA-target prediction Theoretical Computer Science Computer Science(all) |
| description |
Giansanti, V., Castelli, M., Beretta, S., & Merelli, I. (2019). Comparing Deep and Machine Learning Approaches in Bioinformatics: A miRNA-Target Prediction Case Study. In V. V. Krzhizhanovskaya, M. H. Lees, P. M. A. Sloot, J. J. Dongarra, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, ... R. Lam (Eds.), Computational Science – ICCS 2019: 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III (pp. 31-44). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11538 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22744-9_3 |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-01-01 2019-01-01T00:00:00Z 2023-05-11T22:03:31Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/152619 |
| url |
http://hdl.handle.net/10362/152619 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9783030227432 0302-9743 PURE: 14032948 https://doi.org/10.1007/978-3-030-22744-9_3 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
14 application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Verlag |
| publisher.none.fl_str_mv |
Springer Verlag |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596899695788032 |