On a problem of M. Kambites regarding abundant semigroups

Bibliographic Details
Main Author: Araújo, João
Publication Date: 2012
Other Authors: Kinyon, Michael
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.2/3817
Summary: A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question.
id RCAP_a05bfd4da05174b26b73cbdee247e2d9
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/3817
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On a problem of M. Kambites regarding abundant semigroupsAbundant semigroupsAdequate semigroupsAmiable semigroups20M1020M0720M20A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question.http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1sRepositório AbertoAraújo, JoãoKinyon, Michael2015-03-25T09:42:50Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/3817eng0092-78721532-412510.1080/00927872.2011.610072info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:56:03Zoai:repositorioaberto.uab.pt:10400.2/3817Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:12:48.012023Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On a problem of M. Kambites regarding abundant semigroups
title On a problem of M. Kambites regarding abundant semigroups
spellingShingle On a problem of M. Kambites regarding abundant semigroups
Araújo, João
Abundant semigroups
Adequate semigroups
Amiable semigroups
20M10
20M07
20M20
title_short On a problem of M. Kambites regarding abundant semigroups
title_full On a problem of M. Kambites regarding abundant semigroups
title_fullStr On a problem of M. Kambites regarding abundant semigroups
title_full_unstemmed On a problem of M. Kambites regarding abundant semigroups
title_sort On a problem of M. Kambites regarding abundant semigroups
author Araújo, João
author_facet Araújo, João
Kinyon, Michael
author_role author
author2 Kinyon, Michael
author2_role author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Araújo, João
Kinyon, Michael
dc.subject.por.fl_str_mv Abundant semigroups
Adequate semigroups
Amiable semigroups
20M10
20M07
20M20
topic Abundant semigroups
Adequate semigroups
Amiable semigroups
20M10
20M07
20M20
description A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2015-03-25T09:42:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/3817
url http://hdl.handle.net/10400.2/3817
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0092-7872
1532-4125
10.1080/00927872.2011.610072
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1s
publisher.none.fl_str_mv http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1s
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599149823492096