On a problem of M. Kambites regarding abundant semigroups
| Main Author: | |
|---|---|
| Publication Date: | 2012 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.2/3817 |
Summary: | A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question. |
| id |
RCAP_a05bfd4da05174b26b73cbdee247e2d9 |
|---|---|
| oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/3817 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
On a problem of M. Kambites regarding abundant semigroupsAbundant semigroupsAdequate semigroupsAmiable semigroups20M1020M0720M20A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question.http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1sRepositório AbertoAraújo, JoãoKinyon, Michael2015-03-25T09:42:50Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/3817eng0092-78721532-412510.1080/00927872.2011.610072info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:56:03Zoai:repositorioaberto.uab.pt:10400.2/3817Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:12:48.012023Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
On a problem of M. Kambites regarding abundant semigroups |
| title |
On a problem of M. Kambites regarding abundant semigroups |
| spellingShingle |
On a problem of M. Kambites regarding abundant semigroups Araújo, João Abundant semigroups Adequate semigroups Amiable semigroups 20M10 20M07 20M20 |
| title_short |
On a problem of M. Kambites regarding abundant semigroups |
| title_full |
On a problem of M. Kambites regarding abundant semigroups |
| title_fullStr |
On a problem of M. Kambites regarding abundant semigroups |
| title_full_unstemmed |
On a problem of M. Kambites regarding abundant semigroups |
| title_sort |
On a problem of M. Kambites regarding abundant semigroups |
| author |
Araújo, João |
| author_facet |
Araújo, João Kinyon, Michael |
| author_role |
author |
| author2 |
Kinyon, Michael |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Repositório Aberto |
| dc.contributor.author.fl_str_mv |
Araújo, João Kinyon, Michael |
| dc.subject.por.fl_str_mv |
Abundant semigroups Adequate semigroups Amiable semigroups 20M10 20M07 20M20 |
| topic |
Abundant semigroups Adequate semigroups Amiable semigroups 20M10 20M07 20M20 |
| description |
A semigroup is regular if it contains at least one idempotent in each -class and in each L-class. A regular semigroup is inverse if it satisfies either of the following equivalent conditions: (i) there is a unique idempotent in each -class and in each L-class, or (ii) the idempotents commute. Analogously, a semigroup is abundant if it contains at least one idempotent in each *-class and in each L*-class. An abundant semigroup is adequate if its idempotents commute. In adequate semigroups, there is a unique idempotent in each * and L*-class. M. Kambites raised the question of the converse: in a finite abundant semigroup such that there is a unique idempotent in each * and L*-class, must the idempotents commute? In this note, we provide a negative answer to this question. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z 2015-03-25T09:42:50Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/3817 |
| url |
http://hdl.handle.net/10400.2/3817 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0092-7872 1532-4125 10.1080/00927872.2011.610072 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1s |
| publisher.none.fl_str_mv |
http://www.tandfonline.com/doi/full/10.1080/00927872.2011.610072#.VRKIAk9ya1s |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833599149823492096 |