Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark
| Main Author: | |
|---|---|
| Publication Date: | 2017 |
| Other Authors: | , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/130707 |
Summary: | Ribeiro, S., Caineta, J., & Costa, A. C. (2017). Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark. In J. J. Gómez-Hernández, J. Rodrigo-Ilarri, E. Cassiraga, M. E. Rodrigo-Clavero, & J. A. Vargas-Guzmán (Eds.), Geostatistics Valencia 2016 (pp. 909-918). (Quantitative Geology and Geostatistics; Vol. 16). Springer. DOI: 10.1007/978-3-319-46819-8_63 ----------------------------- The authors gratefully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenization and interpolation of climate data”). |
| id |
RCAP_a0069a11ffcad421a3cbefccc2ad1eff |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/130707 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME BenchmarkPerformance MetricsHomogenisation MethodCandidate StationCorrection ParameterProbability density functionRibeiro, S., Caineta, J., & Costa, A. C. (2017). Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark. In J. J. Gómez-Hernández, J. Rodrigo-Ilarri, E. Cassiraga, M. E. Rodrigo-Clavero, & J. A. Vargas-Guzmán (Eds.), Geostatistics Valencia 2016 (pp. 909-918). (Quantitative Geology and Geostatistics; Vol. 16). Springer. DOI: 10.1007/978-3-319-46819-8_63 ----------------------------- The authors gratefully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenization and interpolation of climate data”).Nowadays, climate data series are used in so many different studies that their importance implies the essential need of good data quality. For this reason, the process of homogenisation became a hot topic in the last decades, and many researchers have focused on developing efficient methods for the detection and correction of inhomogeneities in climate data series. This study evaluates the efficiency of the gsimcli homogenisation method, which is based on a geostatistical simulation approach. For each instant in time, gsimcli uses the direct sequential simulation algorithm to generate several equally probable realisations of the climate variable at the candidate station’s location, disregarding its values. The probability density function estimated at the candidate station’s location (local probability density functions (PDF)), for each instant in time, is then used to verify the existence of inhomogeneities in the candidate time series. When an inhomogeneity is detected, that value is replaced by a statistical value (correction parameter) derived from the estimated local PDF. In order to assess the gsimcli efficiency with different implementation strategies, we homogenised monthly precipitation data from an Austrian network of the COST-HOME benchmark data set (COST Action ES0601, Advances in homogenization methods of climate series: an integrated approach – HOME). The following parameters were tested: grid cell size, candidate order in the homogenisation process, local radius parameter, detection parameter and correction parameter. Performance metrics were computed to assess the efficiency of gsimcli. The results show the high influence of the grid cell size and of the correction parameter in the method’s performance.SpringerNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRibeiro, SaraCaineta, J.Costa, Ana Cristina2022-01-12T23:10:20Z20172017-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/130707eng978-3-319-46818-1PURE: 3627440https://doi.org/10.1007/978-3-319-46819-8_63info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:58:04Zoai:run.unl.pt:10362/130707Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:29:17.952674Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| title |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| spellingShingle |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark Ribeiro, Sara Performance Metrics Homogenisation Method Candidate Station Correction Parameter Probability density function |
| title_short |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| title_full |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| title_fullStr |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| title_full_unstemmed |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| title_sort |
Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark |
| author |
Ribeiro, Sara |
| author_facet |
Ribeiro, Sara Caineta, J. Costa, Ana Cristina |
| author_role |
author |
| author2 |
Caineta, J. Costa, Ana Cristina |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Ribeiro, Sara Caineta, J. Costa, Ana Cristina |
| dc.subject.por.fl_str_mv |
Performance Metrics Homogenisation Method Candidate Station Correction Parameter Probability density function |
| topic |
Performance Metrics Homogenisation Method Candidate Station Correction Parameter Probability density function |
| description |
Ribeiro, S., Caineta, J., & Costa, A. C. (2017). Assessing the Performance of the Gsimcli Homogenisation Method with Precipitation Monthly Data from the COST-HOME Benchmark. In J. J. Gómez-Hernández, J. Rodrigo-Ilarri, E. Cassiraga, M. E. Rodrigo-Clavero, & J. A. Vargas-Guzmán (Eds.), Geostatistics Valencia 2016 (pp. 909-918). (Quantitative Geology and Geostatistics; Vol. 16). Springer. DOI: 10.1007/978-3-319-46819-8_63 ----------------------------- The authors gratefully acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 (“GSIMCLI – Geostatistical simulation with local distributions for the homogenization and interpolation of climate data”). |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2022-01-12T23:10:20Z |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/130707 |
| url |
http://hdl.handle.net/10362/130707 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-319-46818-1 PURE: 3627440 https://doi.org/10.1007/978-3-319-46819-8_63 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596729404948480 |