Troppo - A Python framework for the reconstruction of context-specific metabolic models
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/61730 |
Summary: | The surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources. |
| id |
RCAP_9fc7d8fa88d9875b1323f9d412beddd6 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/61730 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Troppo - A Python framework for the reconstruction of context-specific metabolic modelsContext-specific model reconstructionTissue specific modelsGenome-scale metabolic modelsOmics data integrationCiências Médicas::Biotecnologia MédicaEngenharia e Tecnologia::Engenharia MédicaScience & TechnologyThe surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also thank the PhD scholarships funded by national funds through Fundacao para a Ciencia e Tecnologia, with references: SFRH/BD/133248/2017 (J.F.), SFRH/BD/118657/2016 (V.V.).info:eu-repo/semantics/publishedVersionSpringerUniversidade do MinhoFerreira, Jorge M. L.Vieira, VítorGomes, JorgeCorreia, SaraRocha, Miguel20202020-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/61730engFerreira, Jorge; Vieira, Vítor; Gomes, Jorge; Correia, Sara; Rocha, Miguel, Troppo - A Python framework for the reconstruction of context-specific metabolic models. Advances in Intelligent Systems and Computing. Vol. 1005 (PACBB 2019), Springer, 146-153, 2020.97830302387282194-53572194-536510.1007/978-3-030-23873-5_18http://www.springer.com/series/11156info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:36:59Zoai:repositorium.sdum.uminho.pt:1822/61730Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:59:03.309631Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| title |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| spellingShingle |
Troppo - A Python framework for the reconstruction of context-specific metabolic models Ferreira, Jorge M. L. Context-specific model reconstruction Tissue specific models Genome-scale metabolic models Omics data integration Ciências Médicas::Biotecnologia Médica Engenharia e Tecnologia::Engenharia Médica Science & Technology |
| title_short |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| title_full |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| title_fullStr |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| title_full_unstemmed |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| title_sort |
Troppo - A Python framework for the reconstruction of context-specific metabolic models |
| author |
Ferreira, Jorge M. L. |
| author_facet |
Ferreira, Jorge M. L. Vieira, Vítor Gomes, Jorge Correia, Sara Rocha, Miguel |
| author_role |
author |
| author2 |
Vieira, Vítor Gomes, Jorge Correia, Sara Rocha, Miguel |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Ferreira, Jorge M. L. Vieira, Vítor Gomes, Jorge Correia, Sara Rocha, Miguel |
| dc.subject.por.fl_str_mv |
Context-specific model reconstruction Tissue specific models Genome-scale metabolic models Omics data integration Ciências Médicas::Biotecnologia Médica Engenharia e Tecnologia::Engenharia Médica Science & Technology |
| topic |
Context-specific model reconstruction Tissue specific models Genome-scale metabolic models Omics data integration Ciências Médicas::Biotecnologia Médica Engenharia e Tecnologia::Engenharia Médica Science & Technology |
| description |
The surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/61730 |
| url |
http://hdl.handle.net/1822/61730 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Ferreira, Jorge; Vieira, Vítor; Gomes, Jorge; Correia, Sara; Rocha, Miguel, Troppo - A Python framework for the reconstruction of context-specific metabolic models. Advances in Intelligent Systems and Computing. Vol. 1005 (PACBB 2019), Springer, 146-153, 2020. 9783030238728 2194-5357 2194-5365 10.1007/978-3-030-23873-5_18 http://www.springer.com/series/11156 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595661256228864 |