Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios

Detalhes bibliográficos
Autor(a) principal: Robalo, Daniel
Data de Publicação: 2015
Outros Autores: Velez, Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.6/14312
Resumo: This work proposes Long Term Evolution-Advanced (LTE-A) integrated Common Radio Resource Management (iCRRM) for inter-band carrier aggregation (CA) between band 7 (2.6 GHz) and band 20 (800 MHz), considering bandwidths of 5 and 20 MHz. The iCRRM entity performs component carrier (CC) scheduling and increases user’s quality of service and experience while considering mobile video traffic. The performance from a new enhanced multi-band scheduling (EMBS) algorithm is compared to the one from a basic multi-band scheduler (BMBS), an integer programming-based general multi-band scheduling (GMBS) and the case without CA. EMBS involves reduced optimization scheduling complexity and allows the allocation of UEs to one or both CCs simultaneously, whereas both BMBS and GMBS only support one CC per UE. Simulations results have shown that, for 5 MHz CCs and cell radius equal to 1,000 m, with EMBS and GMBS, the 3GPP and ITU-T’s 1% packet loss ratio (PLR) threshold is only exceeded above 58 UEs (goodputs of 7.48 and 7.40 Mbps, respectively), while with BMBS only 54 UEs (6.9 Mbps) are supported. Without CA, the minimum obtained PLR is approximately 2%. For CCs with bandwidth of 20 MHz, only EMBS has been considered. The PLR threshold is not exceeded up to 40 users and the value of QoE raises from 2.86 (for 5-MHz bandwidth) to 3.96, while a gain of 9.56 occurs in supported goodput, increasing from 7.48 to 71.53 Mbps. Results from the cost/revenue trade-off have shown substantial improvements by using CA. Although the profit increases as the price per megabyte increases, it is verified that prices can be much lower if a bandwidth of 20 MHz is available. Assuming values for the supported goodput under the PLR ≤1% range and 20 MHz CCs, it has been shown that the percentage of profit decreases at a considerably higher rate (compared to 5-MHz bandwidth), due to the lower rate of decrease from the curve for costs. Considering PLR ≤1%, the profit curve for 20 MHz CCs at 0.001 € /MByte is similar to the one for 5 MHz CCs and price of 0.01 € /MByte for the smallest cell sizes (few hundreds of meters) but starts to decrease faster for larger cells.
id RCAP_9f71a9733b34a2f33f3d0ceeecc7fcd7
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/14312
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenariosEconomic trade-offOptimizationCarrier aggregationEnhanced multi-band schedulingLTE-AdvancedThis work proposes Long Term Evolution-Advanced (LTE-A) integrated Common Radio Resource Management (iCRRM) for inter-band carrier aggregation (CA) between band 7 (2.6 GHz) and band 20 (800 MHz), considering bandwidths of 5 and 20 MHz. The iCRRM entity performs component carrier (CC) scheduling and increases user’s quality of service and experience while considering mobile video traffic. The performance from a new enhanced multi-band scheduling (EMBS) algorithm is compared to the one from a basic multi-band scheduler (BMBS), an integer programming-based general multi-band scheduling (GMBS) and the case without CA. EMBS involves reduced optimization scheduling complexity and allows the allocation of UEs to one or both CCs simultaneously, whereas both BMBS and GMBS only support one CC per UE. Simulations results have shown that, for 5 MHz CCs and cell radius equal to 1,000 m, with EMBS and GMBS, the 3GPP and ITU-T’s 1% packet loss ratio (PLR) threshold is only exceeded above 58 UEs (goodputs of 7.48 and 7.40 Mbps, respectively), while with BMBS only 54 UEs (6.9 Mbps) are supported. Without CA, the minimum obtained PLR is approximately 2%. For CCs with bandwidth of 20 MHz, only EMBS has been considered. The PLR threshold is not exceeded up to 40 users and the value of QoE raises from 2.86 (for 5-MHz bandwidth) to 3.96, while a gain of 9.56 occurs in supported goodput, increasing from 7.48 to 71.53 Mbps. Results from the cost/revenue trade-off have shown substantial improvements by using CA. Although the profit increases as the price per megabyte increases, it is verified that prices can be much lower if a bandwidth of 20 MHz is available. Assuming values for the supported goodput under the PLR ≤1% range and 20 MHz CCs, it has been shown that the percentage of profit decreases at a considerably higher rate (compared to 5-MHz bandwidth), due to the lower rate of decrease from the curve for costs. Considering PLR ≤1%, the profit curve for 20 MHz CCs at 0.001 € /MByte is similar to the one for 5 MHz CCs and price of 0.01 € /MByte for the smallest cell sizes (few hundreds of meters) but starts to decrease faster for larger cells.EURASIPuBibliorumRobalo, DanielVelez, Fernando2024-03-25T14:29:30Z2015-032015-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/14312eng10.1186/s13638-015-0371-9info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T14:24:58Zoai:ubibliorum.ubi.pt:10400.6/14312Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:17:59.561291Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
title Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
spellingShingle Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
Robalo, Daniel
Economic trade-off
Optimization
Carrier aggregation
Enhanced multi-band scheduling
LTE-Advanced
title_short Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
title_full Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
title_fullStr Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
title_full_unstemmed Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
title_sort Economic trade-off in the optimization of carrier aggregation with enhanced multi-band scheduling in LTE-Advanced scenarios
author Robalo, Daniel
author_facet Robalo, Daniel
Velez, Fernando
author_role author
author2 Velez, Fernando
author2_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Robalo, Daniel
Velez, Fernando
dc.subject.por.fl_str_mv Economic trade-off
Optimization
Carrier aggregation
Enhanced multi-band scheduling
LTE-Advanced
topic Economic trade-off
Optimization
Carrier aggregation
Enhanced multi-band scheduling
LTE-Advanced
description This work proposes Long Term Evolution-Advanced (LTE-A) integrated Common Radio Resource Management (iCRRM) for inter-band carrier aggregation (CA) between band 7 (2.6 GHz) and band 20 (800 MHz), considering bandwidths of 5 and 20 MHz. The iCRRM entity performs component carrier (CC) scheduling and increases user’s quality of service and experience while considering mobile video traffic. The performance from a new enhanced multi-band scheduling (EMBS) algorithm is compared to the one from a basic multi-band scheduler (BMBS), an integer programming-based general multi-band scheduling (GMBS) and the case without CA. EMBS involves reduced optimization scheduling complexity and allows the allocation of UEs to one or both CCs simultaneously, whereas both BMBS and GMBS only support one CC per UE. Simulations results have shown that, for 5 MHz CCs and cell radius equal to 1,000 m, with EMBS and GMBS, the 3GPP and ITU-T’s 1% packet loss ratio (PLR) threshold is only exceeded above 58 UEs (goodputs of 7.48 and 7.40 Mbps, respectively), while with BMBS only 54 UEs (6.9 Mbps) are supported. Without CA, the minimum obtained PLR is approximately 2%. For CCs with bandwidth of 20 MHz, only EMBS has been considered. The PLR threshold is not exceeded up to 40 users and the value of QoE raises from 2.86 (for 5-MHz bandwidth) to 3.96, while a gain of 9.56 occurs in supported goodput, increasing from 7.48 to 71.53 Mbps. Results from the cost/revenue trade-off have shown substantial improvements by using CA. Although the profit increases as the price per megabyte increases, it is verified that prices can be much lower if a bandwidth of 20 MHz is available. Assuming values for the supported goodput under the PLR ≤1% range and 20 MHz CCs, it has been shown that the percentage of profit decreases at a considerably higher rate (compared to 5-MHz bandwidth), due to the lower rate of decrease from the curve for costs. Considering PLR ≤1%, the profit curve for 20 MHz CCs at 0.001 € /MByte is similar to the one for 5 MHz CCs and price of 0.01 € /MByte for the smallest cell sizes (few hundreds of meters) but starts to decrease faster for larger cells.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
2015-03-01T00:00:00Z
2024-03-25T14:29:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/14312
url http://hdl.handle.net/10400.6/14312
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1186/s13638-015-0371-9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EURASIP
publisher.none.fl_str_mv EURASIP
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600914115526656