On the theory of periodic multivariate INAR processes

Bibliographic Details
Main Author: Santos, Cláudia
Publication Date: 2021
Other Authors: Pereira, Isabel, Scotto, Manuel G.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/31424
Summary: In this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented.
id RCAP_9ede8d0781579bb85eb62b83f16b2e8b
oai_identifier_str oai:ria.ua.pt:10773/31424
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the theory of periodic multivariate INAR processesPeriodic autoregressionBinomial thinning operatorParameter estimationIn this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented.Springer2021-05-25T08:26:41Z2022-06-30T00:00:00Z2021-06-01T00:00:00Z2021-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31424eng0932-502610.1007/s00362-019-01136-5Santos, CláudiaPereira, IsabelScotto, Manuel G.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:32:01Zoai:ria.ua.pt:10773/31424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:11:39.396227Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the theory of periodic multivariate INAR processes
title On the theory of periodic multivariate INAR processes
spellingShingle On the theory of periodic multivariate INAR processes
Santos, Cláudia
Periodic autoregression
Binomial thinning operator
Parameter estimation
title_short On the theory of periodic multivariate INAR processes
title_full On the theory of periodic multivariate INAR processes
title_fullStr On the theory of periodic multivariate INAR processes
title_full_unstemmed On the theory of periodic multivariate INAR processes
title_sort On the theory of periodic multivariate INAR processes
author Santos, Cláudia
author_facet Santos, Cláudia
Pereira, Isabel
Scotto, Manuel G.
author_role author
author2 Pereira, Isabel
Scotto, Manuel G.
author2_role author
author
dc.contributor.author.fl_str_mv Santos, Cláudia
Pereira, Isabel
Scotto, Manuel G.
dc.subject.por.fl_str_mv Periodic autoregression
Binomial thinning operator
Parameter estimation
topic Periodic autoregression
Binomial thinning operator
Parameter estimation
description In this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-25T08:26:41Z
2021-06-01T00:00:00Z
2021-06
2022-06-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31424
url http://hdl.handle.net/10773/31424
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0932-5026
10.1007/s00362-019-01136-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594384264724480