On the theory of periodic multivariate INAR processes
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/31424 |
Summary: | In this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented. |
id |
RCAP_9ede8d0781579bb85eb62b83f16b2e8b |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31424 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the theory of periodic multivariate INAR processesPeriodic autoregressionBinomial thinning operatorParameter estimationIn this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented.Springer2021-05-25T08:26:41Z2022-06-30T00:00:00Z2021-06-01T00:00:00Z2021-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31424eng0932-502610.1007/s00362-019-01136-5Santos, CláudiaPereira, IsabelScotto, Manuel G.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:32:01Zoai:ria.ua.pt:10773/31424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:11:39.396227Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the theory of periodic multivariate INAR processes |
title |
On the theory of periodic multivariate INAR processes |
spellingShingle |
On the theory of periodic multivariate INAR processes Santos, Cláudia Periodic autoregression Binomial thinning operator Parameter estimation |
title_short |
On the theory of periodic multivariate INAR processes |
title_full |
On the theory of periodic multivariate INAR processes |
title_fullStr |
On the theory of periodic multivariate INAR processes |
title_full_unstemmed |
On the theory of periodic multivariate INAR processes |
title_sort |
On the theory of periodic multivariate INAR processes |
author |
Santos, Cláudia |
author_facet |
Santos, Cláudia Pereira, Isabel Scotto, Manuel G. |
author_role |
author |
author2 |
Pereira, Isabel Scotto, Manuel G. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos, Cláudia Pereira, Isabel Scotto, Manuel G. |
dc.subject.por.fl_str_mv |
Periodic autoregression Binomial thinning operator Parameter estimation |
topic |
Periodic autoregression Binomial thinning operator Parameter estimation |
description |
In this paper a multivariate integer-valued autoregressive model of order one with periodic time-varying parameters, and driven by a periodic innovations sequence of independent random vectors is introduced and studied in detail. Emphasis is placed on models with periodic multivariate negative binomial innovations. Basic probabilistic and statistical properties of the novel model are discussed. Aiming to reduce computational burden arising from the use of the conditional maximum likelihood method, a composite likelihood-based approach is adopted. The performance of such method is compared with that of some traditional competitors, namely moment estimators and conditional maximum likelihood estimators. Forecasting is also addressed. Furthermore, an application to a real data set concerning the monthly number of fires in three counties in Portugal is presented. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-25T08:26:41Z 2021-06-01T00:00:00Z 2021-06 2022-06-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31424 |
url |
http://hdl.handle.net/10773/31424 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0932-5026 10.1007/s00362-019-01136-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594384264724480 |