Music score binarization based on domain knowledge
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/11328/2484 https://doi.org/10.1007/978-3-642-21257-4_87 |
Summary: | Image binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods. |
id |
RCAP_9e5fd1889d2361a89f3689653c008d87 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/2484 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Music score binarization based on domain knowledgeComputer visionImage processingMusic recognitionImage binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods.Springer2018-12-18T16:47:15Z2018-12-182011-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfPinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484http://hdl.handle.net/11328/2484Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484http://hdl.handle.net/11328/2484https://doi.org/10.1007/978-3-642-21257-4_87eng978-3-642-21256-7978-3-642-21257-4https://link.springer.com/chapter/10.1007/978-3-642-21257-4_87http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPinto, TelmoRebelo, AnaGiraldi, GilsonCardoso, Jaime S.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:11:06Zoai:repositorio.upt.pt:11328/2484Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:30:22.262919Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Music score binarization based on domain knowledge |
title |
Music score binarization based on domain knowledge |
spellingShingle |
Music score binarization based on domain knowledge Pinto, Telmo Computer vision Image processing Music recognition |
title_short |
Music score binarization based on domain knowledge |
title_full |
Music score binarization based on domain knowledge |
title_fullStr |
Music score binarization based on domain knowledge |
title_full_unstemmed |
Music score binarization based on domain knowledge |
title_sort |
Music score binarization based on domain knowledge |
author |
Pinto, Telmo |
author_facet |
Pinto, Telmo Rebelo, Ana Giraldi, Gilson Cardoso, Jaime S. |
author_role |
author |
author2 |
Rebelo, Ana Giraldi, Gilson Cardoso, Jaime S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Pinto, Telmo Rebelo, Ana Giraldi, Gilson Cardoso, Jaime S. |
dc.subject.por.fl_str_mv |
Computer vision Image processing Music recognition |
topic |
Computer vision Image processing Music recognition |
description |
Image binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2018-12-18T16:47:15Z 2018-12-18 |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484 http://hdl.handle.net/11328/2484 Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484 http://hdl.handle.net/11328/2484 https://doi.org/10.1007/978-3-642-21257-4_87 |
identifier_str_mv |
Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484 |
url |
http://hdl.handle.net/11328/2484 https://doi.org/10.1007/978-3-642-21257-4_87 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-642-21256-7 978-3-642-21257-4 https://link.springer.com/chapter/10.1007/978-3-642-21257-4_87 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598140393979904 |