Music score binarization based on domain knowledge

Bibliographic Details
Main Author: Pinto, Telmo
Publication Date: 2011
Other Authors: Rebelo, Ana, Giraldi, Gilson, Cardoso, Jaime S.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/11328/2484
https://doi.org/10.1007/978-3-642-21257-4_87
Summary: Image binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods.
id RCAP_9e5fd1889d2361a89f3689653c008d87
oai_identifier_str oai:repositorio.upt.pt:11328/2484
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Music score binarization based on domain knowledgeComputer visionImage processingMusic recognitionImage binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods.Springer2018-12-18T16:47:15Z2018-12-182011-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfPinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484http://hdl.handle.net/11328/2484Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484http://hdl.handle.net/11328/2484https://doi.org/10.1007/978-3-642-21257-4_87eng978-3-642-21256-7978-3-642-21257-4https://link.springer.com/chapter/10.1007/978-3-642-21257-4_87http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPinto, TelmoRebelo, AnaGiraldi, GilsonCardoso, Jaime S.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:11:06Zoai:repositorio.upt.pt:11328/2484Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:30:22.262919Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Music score binarization based on domain knowledge
title Music score binarization based on domain knowledge
spellingShingle Music score binarization based on domain knowledge
Pinto, Telmo
Computer vision
Image processing
Music recognition
title_short Music score binarization based on domain knowledge
title_full Music score binarization based on domain knowledge
title_fullStr Music score binarization based on domain knowledge
title_full_unstemmed Music score binarization based on domain knowledge
title_sort Music score binarization based on domain knowledge
author Pinto, Telmo
author_facet Pinto, Telmo
Rebelo, Ana
Giraldi, Gilson
Cardoso, Jaime S.
author_role author
author2 Rebelo, Ana
Giraldi, Gilson
Cardoso, Jaime S.
author2_role author
author
author
dc.contributor.author.fl_str_mv Pinto, Telmo
Rebelo, Ana
Giraldi, Gilson
Cardoso, Jaime S.
dc.subject.por.fl_str_mv Computer vision
Image processing
Music recognition
topic Computer vision
Image processing
Music recognition
description Image binarization is a common operation in the pre- processing stage in most Optical Music Recognition (OMR) systems. The choice of an appropriate binarization method for handwritten music scores is a difficult problem. Several works have already evaluated the performance of existing binarization processes in diverse applications. However, no goal-directed studies for music sheets documents were carried out. This paper presents a novel binarization method based in the content knowledge of the image. The method only needs the estimation of the staffline thickness and the vertical distance between two stafflines. This information is extracted directly from the gray level music score. The proposed binarization procedure is experimentally compared with several state of the art methods.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2018-12-18T16:47:15Z
2018-12-18
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484
http://hdl.handle.net/11328/2484
Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484
http://hdl.handle.net/11328/2484
https://doi.org/10.1007/978-3-642-21257-4_87
identifier_str_mv Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J. S. (2011). Music score binarization based on domain knowledge. In Proceedings of 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas, Spain, 2011 (pp. 700-708). Disponível no Repositório UPT, http://hdl.handle.net/11328/2484
url http://hdl.handle.net/11328/2484
https://doi.org/10.1007/978-3-642-21257-4_87
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-642-21256-7
978-3-642-21257-4
https://link.springer.com/chapter/10.1007/978-3-642-21257-4_87
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598140393979904