Complex-order particle swarm optimization
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/18620 |
Summary: | In this paper, the generalization of the Particle Swarm Optimization (PSO) algorithm is proposed. The new algorithm involves the adoption of complex-order derivatives (CD). Since the CD produce complex-valued results, conjugate pairs of CD are considered for designing the Complex-Order PSO (CoPSO). First, an extensive sensitivity analysis is carried out for studying the influence of the control parameters on the performance of CoPSO. Then, a set of classical benchmark functions are tested to verify the performance of CoPSO. Both valued- and ranked-based methods are conducted to compare the performance of the algorithm on the whole test suite. The Friedman test is applied to determine the average ranking of the algorithms based on their performances. Additionally, the mean and the standard deviation of the best results are examined in each experiment. The results indicate that the CoPSO has outstanding performance in comparison with previous algorithms, including the standard PSO, the fractional order PSO and the linear and nonlinear decreasing inertia weight PSO. The experimental results indicate the feasibility and efficiency of the CoPSO. |
id |
RCAP_9ddf35401261dbb3f717a0f67bf164d4 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18620 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Complex-order particle swarm optimizationFractional calculusParticle swarm optimizationComplex orderIn this paper, the generalization of the Particle Swarm Optimization (PSO) algorithm is proposed. The new algorithm involves the adoption of complex-order derivatives (CD). Since the CD produce complex-valued results, conjugate pairs of CD are considered for designing the Complex-Order PSO (CoPSO). First, an extensive sensitivity analysis is carried out for studying the influence of the control parameters on the performance of CoPSO. Then, a set of classical benchmark functions are tested to verify the performance of CoPSO. Both valued- and ranked-based methods are conducted to compare the performance of the algorithm on the whole test suite. The Friedman test is applied to determine the average ranking of the algorithms based on their performances. Additionally, the mean and the standard deviation of the best results are examined in each experiment. The results indicate that the CoPSO has outstanding performance in comparison with previous algorithms, including the standard PSO, the fractional order PSO and the linear and nonlinear decreasing inertia weight PSO. The experimental results indicate the feasibility and efficiency of the CoPSO.ElsevierREPOSITÓRIO P.PORTOMachado, J. A. TenreiroAbedi Pahnehkolaei, Seyed MehdiAlfi, Alireza20212031-12-01T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18620eng10.1016/j.cnsns.2020.105448info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T02:55:06Zoai:recipp.ipp.pt:10400.22/18620Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:28:08.984261Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Complex-order particle swarm optimization |
title |
Complex-order particle swarm optimization |
spellingShingle |
Complex-order particle swarm optimization Machado, J. A. Tenreiro Fractional calculus Particle swarm optimization Complex order |
title_short |
Complex-order particle swarm optimization |
title_full |
Complex-order particle swarm optimization |
title_fullStr |
Complex-order particle swarm optimization |
title_full_unstemmed |
Complex-order particle swarm optimization |
title_sort |
Complex-order particle swarm optimization |
author |
Machado, J. A. Tenreiro |
author_facet |
Machado, J. A. Tenreiro Abedi Pahnehkolaei, Seyed Mehdi Alfi, Alireza |
author_role |
author |
author2 |
Abedi Pahnehkolaei, Seyed Mehdi Alfi, Alireza |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Machado, J. A. Tenreiro Abedi Pahnehkolaei, Seyed Mehdi Alfi, Alireza |
dc.subject.por.fl_str_mv |
Fractional calculus Particle swarm optimization Complex order |
topic |
Fractional calculus Particle swarm optimization Complex order |
description |
In this paper, the generalization of the Particle Swarm Optimization (PSO) algorithm is proposed. The new algorithm involves the adoption of complex-order derivatives (CD). Since the CD produce complex-valued results, conjugate pairs of CD are considered for designing the Complex-Order PSO (CoPSO). First, an extensive sensitivity analysis is carried out for studying the influence of the control parameters on the performance of CoPSO. Then, a set of classical benchmark functions are tested to verify the performance of CoPSO. Both valued- and ranked-based methods are conducted to compare the performance of the algorithm on the whole test suite. The Friedman test is applied to determine the average ranking of the algorithms based on their performances. Additionally, the mean and the standard deviation of the best results are examined in each experiment. The results indicate that the CoPSO has outstanding performance in comparison with previous algorithms, including the standard PSO, the fractional order PSO and the linear and nonlinear decreasing inertia weight PSO. The experimental results indicate the feasibility and efficiency of the CoPSO. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2031-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18620 |
url |
http://hdl.handle.net/10400.22/18620 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.cnsns.2020.105448 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600546649407488 |