Mental health at Nova Sbe
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/156088 |
Resumo: | This research tackles the understanding of the leading drivers affecting mental health amongst Nova SBE students during Covid-19. The objective behind the study is to identify the groups of students with the highest risk of suffering from poor mental health, in order to achieve measures of prevention corresponding to where they may suffer the most. The dataset is composed of three similar surveys forwarded to students in separate times of the academic year 2021-2022. I will be using unsupervised clustering algorithms on the data to fixate newly formed groups of students sharing the same similarity traits based on the frameworks of the surveys. The results will be leveraged using analytical and descriptive techniques to serve the purpose of the study. The main tool used in this research is Python programming language, mainly chosen for the implementation of the material covered during my master’s degree, and for the flexibility of using the different packages and libraries (Pandas, NumPy, Matplotlib, Scikit-learn). |
| id |
RCAP_9af7df40f4e718f9de4e3f19b3925205 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/156088 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Mental health at Nova SbeMental healthStudentsClustering algorithmsPreventionDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis research tackles the understanding of the leading drivers affecting mental health amongst Nova SBE students during Covid-19. The objective behind the study is to identify the groups of students with the highest risk of suffering from poor mental health, in order to achieve measures of prevention corresponding to where they may suffer the most. The dataset is composed of three similar surveys forwarded to students in separate times of the academic year 2021-2022. I will be using unsupervised clustering algorithms on the data to fixate newly formed groups of students sharing the same similarity traits based on the frameworks of the surveys. The results will be leveraged using analytical and descriptive techniques to serve the purpose of the study. The main tool used in this research is Python programming language, mainly chosen for the implementation of the material covered during my master’s degree, and for the flexibility of using the different packages and libraries (Pandas, NumPy, Matplotlib, Scikit-learn).Barros, Pedro PitaRUNAhrach, Bilal El2023-08-01T08:47:40Z2023-01-132023-01-122023-01-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/156088TID:203312473enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:13:31Zoai:run.unl.pt:10362/156088Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:43:59.267242Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Mental health at Nova Sbe |
| title |
Mental health at Nova Sbe |
| spellingShingle |
Mental health at Nova Sbe Ahrach, Bilal El Mental health Students Clustering algorithms Prevention Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| title_short |
Mental health at Nova Sbe |
| title_full |
Mental health at Nova Sbe |
| title_fullStr |
Mental health at Nova Sbe |
| title_full_unstemmed |
Mental health at Nova Sbe |
| title_sort |
Mental health at Nova Sbe |
| author |
Ahrach, Bilal El |
| author_facet |
Ahrach, Bilal El |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Barros, Pedro Pita RUN |
| dc.contributor.author.fl_str_mv |
Ahrach, Bilal El |
| dc.subject.por.fl_str_mv |
Mental health Students Clustering algorithms Prevention Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| topic |
Mental health Students Clustering algorithms Prevention Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| description |
This research tackles the understanding of the leading drivers affecting mental health amongst Nova SBE students during Covid-19. The objective behind the study is to identify the groups of students with the highest risk of suffering from poor mental health, in order to achieve measures of prevention corresponding to where they may suffer the most. The dataset is composed of three similar surveys forwarded to students in separate times of the academic year 2021-2022. I will be using unsupervised clustering algorithms on the data to fixate newly formed groups of students sharing the same similarity traits based on the frameworks of the surveys. The results will be leveraged using analytical and descriptive techniques to serve the purpose of the study. The main tool used in this research is Python programming language, mainly chosen for the implementation of the material covered during my master’s degree, and for the flexibility of using the different packages and libraries (Pandas, NumPy, Matplotlib, Scikit-learn). |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-01T08:47:40Z 2023-01-13 2023-01-12 2023-01-13T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/156088 TID:203312473 |
| url |
http://hdl.handle.net/10362/156088 |
| identifier_str_mv |
TID:203312473 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596924682305536 |