Forecasting the Retirement Age

Bibliographic Details
Main Author: Bravo, Jorge M.
Publication Date: 2021
Other Authors: Ayuso, Mercedes
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/118589
Summary: ravo, J. M., & Ayuso, M. (2021). Forecasting the Retirement Age: A Bayesian Model Ensemble Approach. In Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, & A. M. R. Correia (Eds.), Trends and Applications in Information Systems and Technologies (pp. 123-135). (Advances in Intelligent Systems and Computing; Vol. 1365 AIST). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-72657-7_12
id RCAP_9a40be4b8db39baf3ad3a1eb92b657d8
oai_identifier_str oai:run.unl.pt:10362/118589
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Forecasting the Retirement AgeA Bayesian Model Ensemble ApproachBayesian Model EnsembleLife expectancy gapMortality forecastingPension design and policyRetirement ageStochastic methodsControl and Systems EngineeringComputer Science(all)SDG 3 - Good Health and Well-beingravo, J. M., & Ayuso, M. (2021). Forecasting the Retirement Age: A Bayesian Model Ensemble Approach. In Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, & A. M. R. Correia (Eds.), Trends and Applications in Information Systems and Technologies (pp. 123-135). (Advances in Intelligent Systems and Computing; Vol. 1365 AIST). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-72657-7_12In recent decades, most countries have responded to continuous longevity improvements and population ageing with pension reforms. Increasing early and normal retirement ages in an automatic or scheduled way as life expectancy at old age progresses has been one of the most common policy responses of public and private pension schemes. This paper provides comparable cross-country forecasts of the retirement age for public pension schemes for selected countries that introduced automatic indexation of pension ages to life expectancy pursuing alternative retirement age policies and goals. We use a Bayesian Model Ensemble of heterogeneous parametric models, principal component methods, and smoothing approaches involving both the selection of the model confidence set and the determination of optimal weights based on model’s forecasting accuracy. Model-averaged Bayesian credible prediction intervals are derived accounting for both stochastic process, model, and parameter risks. Our results show that statutory retirement ages are forecasted to increase substantially in the next decades, particularly in countries that have opted to target a constant period in retirement. The use of cohort and not period life expectancy measures in pension age indexation formulas would raise retirement ages even further. These results have important micro and macroeconomic implications for the design of pension schemes and individual lifecycle planning.Springer Science and Business Media Deutschland GmbHInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBravo, Jorge M.Ayuso, Mercedes2023-03-12T01:32:31Z2021-04-232021-04-23T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion13application/pdfhttp://hdl.handle.net/10362/118589eng97830307265602194-5357PURE: 31609272https://doi.org/10.1007/978-3-030-72657-7_12info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:53:35Zoai:run.unl.pt:10362/118589Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:24:48.476984Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Forecasting the Retirement Age
A Bayesian Model Ensemble Approach
title Forecasting the Retirement Age
spellingShingle Forecasting the Retirement Age
Bravo, Jorge M.
Bayesian Model Ensemble
Life expectancy gap
Mortality forecasting
Pension design and policy
Retirement age
Stochastic methods
Control and Systems Engineering
Computer Science(all)
SDG 3 - Good Health and Well-being
title_short Forecasting the Retirement Age
title_full Forecasting the Retirement Age
title_fullStr Forecasting the Retirement Age
title_full_unstemmed Forecasting the Retirement Age
title_sort Forecasting the Retirement Age
author Bravo, Jorge M.
author_facet Bravo, Jorge M.
Ayuso, Mercedes
author_role author
author2 Ayuso, Mercedes
author2_role author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Bravo, Jorge M.
Ayuso, Mercedes
dc.subject.por.fl_str_mv Bayesian Model Ensemble
Life expectancy gap
Mortality forecasting
Pension design and policy
Retirement age
Stochastic methods
Control and Systems Engineering
Computer Science(all)
SDG 3 - Good Health and Well-being
topic Bayesian Model Ensemble
Life expectancy gap
Mortality forecasting
Pension design and policy
Retirement age
Stochastic methods
Control and Systems Engineering
Computer Science(all)
SDG 3 - Good Health and Well-being
description ravo, J. M., & Ayuso, M. (2021). Forecasting the Retirement Age: A Bayesian Model Ensemble Approach. In Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, & A. M. R. Correia (Eds.), Trends and Applications in Information Systems and Technologies (pp. 123-135). (Advances in Intelligent Systems and Computing; Vol. 1365 AIST). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-72657-7_12
publishDate 2021
dc.date.none.fl_str_mv 2021-04-23
2021-04-23T00:00:00Z
2023-03-12T01:32:31Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/118589
url http://hdl.handle.net/10362/118589
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9783030726560
2194-5357
PURE: 31609272
https://doi.org/10.1007/978-3-030-72657-7_12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13
application/pdf
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596675262775296