Target tracking with sensor navigation using coupled RSS and AOA measurements
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.3390/s17112690 |
Summary: | The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions which improved the quality of the paper. This work was partially supported by Fundacao para a Ciencia e a Tecnologia under Project PEst-OE/EEI/UI0066/2014, Project UID/EEA/50008/2013, Project UID/EEA/50009/2013, and Program Investigador FCT under Grant IF/00325/2015. |
id |
RCAP_986e34aaa7420689feb8134333bb5087 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/42035 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Target tracking with sensor navigation using coupled RSS and AOA measurementsAngle of arrival (AoA)Kalman filter (KF)Maximum a posteriori (MAP) estimatorReceived signal strength (RSS)Sensor navigationTarget trackingAnalytical ChemistryAtomic and Molecular Physics, and OpticsBiochemistryInstrumentationElectrical and Electronic EngineeringThe authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions which improved the quality of the paper. This work was partially supported by Fundacao para a Ciencia e a Tecnologia under Project PEst-OE/EEI/UI0066/2014, Project UID/EEA/50008/2013, Project UID/EEA/50009/2013, and Program Investigador FCT under Grant IF/00325/2015.This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE) and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.CTS - Centro de Tecnologia e SistemasUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasDEE2010-A1 TelecomunicaçõesDEE - Departamento de Engenharia Electrotécnica e de ComputadoresRUNTomic, SlavisaBeko, MarkoDinis, RuiGomes, João Pedro2018-07-19T22:11:29Z2017-11-212017-11-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.3390/s17112690eng1424-8220PURE: 4021961http://www.scopus.com/inward/record.url?scp=85035148524&partnerID=8YFLogxKhttps://doi.org/10.3390/s17112690info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:33:58Zoai:run.unl.pt:10362/42035Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:04:52.339792Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
title |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
spellingShingle |
Target tracking with sensor navigation using coupled RSS and AOA measurements Tomic, Slavisa Angle of arrival (AoA) Kalman filter (KF) Maximum a posteriori (MAP) estimator Received signal strength (RSS) Sensor navigation Target tracking Analytical Chemistry Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering |
title_short |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
title_full |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
title_fullStr |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
title_full_unstemmed |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
title_sort |
Target tracking with sensor navigation using coupled RSS and AOA measurements |
author |
Tomic, Slavisa |
author_facet |
Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro |
author_role |
author |
author2 |
Beko, Marko Dinis, Rui Gomes, João Pedro |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
CTS - Centro de Tecnologia e Sistemas UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias DEE2010-A1 Telecomunicações DEE - Departamento de Engenharia Electrotécnica e de Computadores RUN |
dc.contributor.author.fl_str_mv |
Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro |
dc.subject.por.fl_str_mv |
Angle of arrival (AoA) Kalman filter (KF) Maximum a posteriori (MAP) estimator Received signal strength (RSS) Sensor navigation Target tracking Analytical Chemistry Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering |
topic |
Angle of arrival (AoA) Kalman filter (KF) Maximum a posteriori (MAP) estimator Received signal strength (RSS) Sensor navigation Target tracking Analytical Chemistry Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering |
description |
The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions which improved the quality of the paper. This work was partially supported by Fundacao para a Ciencia e a Tecnologia under Project PEst-OE/EEI/UI0066/2014, Project UID/EEA/50008/2013, Project UID/EEA/50009/2013, and Program Investigador FCT under Grant IF/00325/2015. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-21 2017-11-21T00:00:00Z 2018-07-19T22:11:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.3390/s17112690 |
url |
https://doi.org/10.3390/s17112690 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-8220 PURE: 4021961 http://www.scopus.com/inward/record.url?scp=85035148524&partnerID=8YFLogxK https://doi.org/10.3390/s17112690 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596420383309824 |