Parkinson’s Disease Tremor Assessment Using Inertial Sensors

Detalhes bibliográficos
Autor(a) principal: Ferreira, Beatriz dos Reis Lopo
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.6/14664
Resumo: Parkinson’s disease (PD) is a chronic, progressive, and neurodegenerative disorder, predicted to be diagnosed for 12 million people by 2040. One of the cardinal symptoms of this disease is tremor. Tremor is characterized as an involuntary and oscillatory movement of a body part and can be divided into rest tremor, postural tremor, and kinetic tremor. The tremor associated with PD is characterized by a 3-6 Hz, regular, asymmetrical tremor and is commonly a rest and/or postural tremor. Nowadays, PD and tremor are usually evaluated by a trained specialist who assesses the symptoms according to the Unified Parkinson’s Disease Rating Scale (UPDRS). However, due to being subjective and representing only a small sample of how symptoms affect the subject during the day, this method exhibits a high within-subject variability and a low test-retest reliability. Consequently, other methods to evaluate tremor that don’t have the same limitations are being proposed and implemented. These methods rely on the use of inertial sensors, like an accelerometer and a gyroscope, and the computation of data collected using these sensors. In this dissertation, a systematic literature review is presented and a mobile app is proposed for the collection of accelerometer and gyroscope sensor data during the performance of five tests, three of them are based on movements performed for the UPDRS evaluation and two of them intend to recreate activities of daily living. This app also includes three daily questionnaires that contextualize the signals collected. Furthermore, a computation framework for the evaluation of tremor is proposed, including the preprocessing, feature extraction, and data analysis steps. The data analysis step is divided into two tasks, the distinction between people with Parkinson’s disease (PwPD) and healthy controls (HC) and the estimation of UPDRS rest tremor scores. A Bagging tree classifier was implemented for both tasks, achieving a good result only for the distinction between the two groups, with a success rate of 85.3%. In addition, a method based on the kurtosis and a method based on the number of 10-second windows in the signal where the fundamental frequency is in the rest tremor frequency band. These methods obtained success rates of 83.3% and 87.88%, respectively.
id RCAP_94df523e47c4e9df436db4d185383fec
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/14664
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Parkinson’s Disease Tremor Assessment Using Inertial SensorsDoença de ParkinsonKurosisMachine LearningPontuação da UpdrsSensores InerciaisTremorParkinson’s disease (PD) is a chronic, progressive, and neurodegenerative disorder, predicted to be diagnosed for 12 million people by 2040. One of the cardinal symptoms of this disease is tremor. Tremor is characterized as an involuntary and oscillatory movement of a body part and can be divided into rest tremor, postural tremor, and kinetic tremor. The tremor associated with PD is characterized by a 3-6 Hz, regular, asymmetrical tremor and is commonly a rest and/or postural tremor. Nowadays, PD and tremor are usually evaluated by a trained specialist who assesses the symptoms according to the Unified Parkinson’s Disease Rating Scale (UPDRS). However, due to being subjective and representing only a small sample of how symptoms affect the subject during the day, this method exhibits a high within-subject variability and a low test-retest reliability. Consequently, other methods to evaluate tremor that don’t have the same limitations are being proposed and implemented. These methods rely on the use of inertial sensors, like an accelerometer and a gyroscope, and the computation of data collected using these sensors. In this dissertation, a systematic literature review is presented and a mobile app is proposed for the collection of accelerometer and gyroscope sensor data during the performance of five tests, three of them are based on movements performed for the UPDRS evaluation and two of them intend to recreate activities of daily living. This app also includes three daily questionnaires that contextualize the signals collected. Furthermore, a computation framework for the evaluation of tremor is proposed, including the preprocessing, feature extraction, and data analysis steps. The data analysis step is divided into two tasks, the distinction between people with Parkinson’s disease (PwPD) and healthy controls (HC) and the estimation of UPDRS rest tremor scores. A Bagging tree classifier was implemented for both tasks, achieving a good result only for the distinction between the two groups, with a success rate of 85.3%. In addition, a method based on the kurtosis and a method based on the number of 10-second windows in the signal where the fundamental frequency is in the rest tremor frequency band. These methods obtained success rates of 83.3% and 87.88%, respectively.A doença de Parkinson é uma doença crónica, progressiva e neurodegenerativa, que se prevê que vá ser diagnosticada a 12 milhões de pessoas até 2040. Um dos sintomas cardinais desta doença é o tremor. O tremor é caracterizado como um movimento involuntário e oscilatório de uma parte corporal e pode ser dividido em tremor de repouso, tremor postural e tremor cinético. O tremor associado a doença de Parkinson é caracterizado por um tremor regular e assimétrico de 3-6 Hz e é geralmente tremor de repouso e/ou tremor postural. Atualmente, a doença de Parkinson e o tremor são geralmente avaliados por um especialista treinado que avalia os sintomas de acordo com a Unified Parkinson’s Disease Rating Scale (UPDRS). Contudo, devido a ser subjetivo e representar apenas uma pequena amostra de como os sintomas afetam o sujeito durante o dia, este método exibe uma alta variabilidade para o mesmo sujeito e uma baixa confiabilidade de teste-reteste. Consequentemente, outros métodos para avaliar o tremor, que não têm as mesmas limitações, estão a ser propostos e implementados. Estes métodos baseiam-se no uso de sensores inerciais, como o acelerómetro e o giroscópio, e na computação dos dados recolhidos usando esses sensores. Esta dissertação contém uma revisão sistemática da literatura e a proposta de uma aplicação móvel para a recolha de dados de acelerómetro e giroscópio durante a realização de cinco testes, três deles baseados em movimentos realizados para a avaliação com a UPDRS e dois deles que recriam atividades do dia-a-dia. Esta aplicação também inclui três questionários diários que contextualizam os sinais recolhidos. Para além disso, é proposto um framework computacional para a avaliação do tremor, incluindo as etapas de pré-processamento, extração de características e análise de dados. A etapa de análise de dados é dividida em duas tarefas, a distinção entre pessoas com a doença de Parkinson e do grupo de controlo, e a estimativa da pontuação da escala do tremor de repouso da UPDRS. O classificador Bagging tree foi implementado para ambas as tarefas, tendo apenas obtido bons resultados para a distinção entre os dois grupos, com uma taxa de acerto de 85.3%. Adicionalmente, foram propostos dois métodos um baseado no kurtosis e outro baseado base no número de janelas de 10 segundos do sinal em que a frequência fundamental está na banda de frequências associada ao tremor de repouso. Para estes métodos foram obtidas taxas de acerto de 83.3% e 87.88%, respetivamente.Santos, Nuno Manuel Garcia dosFelizardo, Virginie dos SantosuBibliorumFerreira, Beatriz dos Reis Lopo2024-03-222024-01-312026-01-31T00:00:00Z2024-03-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/14664urn:tid:203721012enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T16:11:18Zoai:ubibliorum.ubi.pt:10400.6/14664Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:32:17.779267Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Parkinson’s Disease Tremor Assessment Using Inertial Sensors
title Parkinson’s Disease Tremor Assessment Using Inertial Sensors
spellingShingle Parkinson’s Disease Tremor Assessment Using Inertial Sensors
Ferreira, Beatriz dos Reis Lopo
Doença de Parkinson
Kurosis
Machine Learning
Pontuação da Updrs
Sensores Inerciais
Tremor
title_short Parkinson’s Disease Tremor Assessment Using Inertial Sensors
title_full Parkinson’s Disease Tremor Assessment Using Inertial Sensors
title_fullStr Parkinson’s Disease Tremor Assessment Using Inertial Sensors
title_full_unstemmed Parkinson’s Disease Tremor Assessment Using Inertial Sensors
title_sort Parkinson’s Disease Tremor Assessment Using Inertial Sensors
author Ferreira, Beatriz dos Reis Lopo
author_facet Ferreira, Beatriz dos Reis Lopo
author_role author
dc.contributor.none.fl_str_mv Santos, Nuno Manuel Garcia dos
Felizardo, Virginie dos Santos
uBibliorum
dc.contributor.author.fl_str_mv Ferreira, Beatriz dos Reis Lopo
dc.subject.por.fl_str_mv Doença de Parkinson
Kurosis
Machine Learning
Pontuação da Updrs
Sensores Inerciais
Tremor
topic Doença de Parkinson
Kurosis
Machine Learning
Pontuação da Updrs
Sensores Inerciais
Tremor
description Parkinson’s disease (PD) is a chronic, progressive, and neurodegenerative disorder, predicted to be diagnosed for 12 million people by 2040. One of the cardinal symptoms of this disease is tremor. Tremor is characterized as an involuntary and oscillatory movement of a body part and can be divided into rest tremor, postural tremor, and kinetic tremor. The tremor associated with PD is characterized by a 3-6 Hz, regular, asymmetrical tremor and is commonly a rest and/or postural tremor. Nowadays, PD and tremor are usually evaluated by a trained specialist who assesses the symptoms according to the Unified Parkinson’s Disease Rating Scale (UPDRS). However, due to being subjective and representing only a small sample of how symptoms affect the subject during the day, this method exhibits a high within-subject variability and a low test-retest reliability. Consequently, other methods to evaluate tremor that don’t have the same limitations are being proposed and implemented. These methods rely on the use of inertial sensors, like an accelerometer and a gyroscope, and the computation of data collected using these sensors. In this dissertation, a systematic literature review is presented and a mobile app is proposed for the collection of accelerometer and gyroscope sensor data during the performance of five tests, three of them are based on movements performed for the UPDRS evaluation and two of them intend to recreate activities of daily living. This app also includes three daily questionnaires that contextualize the signals collected. Furthermore, a computation framework for the evaluation of tremor is proposed, including the preprocessing, feature extraction, and data analysis steps. The data analysis step is divided into two tasks, the distinction between people with Parkinson’s disease (PwPD) and healthy controls (HC) and the estimation of UPDRS rest tremor scores. A Bagging tree classifier was implemented for both tasks, achieving a good result only for the distinction between the two groups, with a success rate of 85.3%. In addition, a method based on the kurtosis and a method based on the number of 10-second windows in the signal where the fundamental frequency is in the rest tremor frequency band. These methods obtained success rates of 83.3% and 87.88%, respectively.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-22
2024-01-31
2024-03-22T00:00:00Z
2026-01-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/14664
urn:tid:203721012
url http://hdl.handle.net/10400.6/14664
identifier_str_mv urn:tid:203721012
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601029522849792