Open Source Platforms for Big Data Analytics
Main Author: | |
---|---|
Publication Date: | 2017 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/11984 |
Summary: | O conceito de Big Data tem tido um grande impacto no campo da tecnologia, em particular na gestão e análise de enormes volumes de informação. Atualmente, as organizações consideram o Big Data como uma oportunidade para gerir e explorar os seus dados o máximo possível, com o objetivo de apoiar as suas decisões dentro das diferentes áreas operacionais. Assim, é necessário analisar vários conceitos sobre o Big Data e o Big Data Analytics, incluindo definições, características, vantagens e desafios. As ferramentas de Business Intelligence (BI), juntamente com a geração de conhecimento, são conceitos fundamentais para o processo de tomada de decisão e transformação da informação. Ao investigar as plataformas de Big Data, as práticas industriais atuais e as tendências relacionadas com o mundo da investigação, é possível entender o impacto do Big Data Analytics nas pequenas organizações. Este trabalho pretende propor soluções para as micro, pequenas ou médias empresas (PME) que têm um grande impacto na economia portuguesa, dado que representam a maioria do tecido empresarial. As plataformas de código aberto para o Big Data Analytics oferecem uma grande oportunidade de inovação nas PMEs. Este trabalho de pesquisa apresenta uma análise comparativa das funcionalidades e características das plataformas e os passos a serem tomados para uma análise mais profunda e comparativa. Após a análise comparativa, apresentamos uma avaliação e seleção de plataformas Big Data Analytics (BDA) usando e adaptando a metodologia QSOS (Qualification and Selection of software Open Source) para qualificação e seleção de software open-source. O resultado desta avaliação e seleção traduziu-se na eleição de duas plataformas para os testes experimentais. Nas plataformas de software livre de BDA foi usado o mesmo conjunto de dados assim como a mesma configuração de hardware e software. Na comparação das duas plataformas, demonstrou que a HPCC Systems Platform é mais eficiente e confiável que a Hortonworks Data Platform. Em particular, as PME portuguesas devem considerar as plataformas BDA como uma oportunidade de obter vantagem competitiva e melhorar os seus processos e, consequentemente, definir uma estratégia de TI e de negócio. Por fim, este é um trabalho sobre Big Data, que se espera que sirva como um convite e motivação para novos trabalhos de investigação. |
id |
RCAP_93b9b92e60aeb485feeb3f09592246d4 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/11984 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Open Source Platforms for Big Data AnalyticsBig DataBig Data AnalyticsBIBig Data PlatformsO conceito de Big Data tem tido um grande impacto no campo da tecnologia, em particular na gestão e análise de enormes volumes de informação. Atualmente, as organizações consideram o Big Data como uma oportunidade para gerir e explorar os seus dados o máximo possível, com o objetivo de apoiar as suas decisões dentro das diferentes áreas operacionais. Assim, é necessário analisar vários conceitos sobre o Big Data e o Big Data Analytics, incluindo definições, características, vantagens e desafios. As ferramentas de Business Intelligence (BI), juntamente com a geração de conhecimento, são conceitos fundamentais para o processo de tomada de decisão e transformação da informação. Ao investigar as plataformas de Big Data, as práticas industriais atuais e as tendências relacionadas com o mundo da investigação, é possível entender o impacto do Big Data Analytics nas pequenas organizações. Este trabalho pretende propor soluções para as micro, pequenas ou médias empresas (PME) que têm um grande impacto na economia portuguesa, dado que representam a maioria do tecido empresarial. As plataformas de código aberto para o Big Data Analytics oferecem uma grande oportunidade de inovação nas PMEs. Este trabalho de pesquisa apresenta uma análise comparativa das funcionalidades e características das plataformas e os passos a serem tomados para uma análise mais profunda e comparativa. Após a análise comparativa, apresentamos uma avaliação e seleção de plataformas Big Data Analytics (BDA) usando e adaptando a metodologia QSOS (Qualification and Selection of software Open Source) para qualificação e seleção de software open-source. O resultado desta avaliação e seleção traduziu-se na eleição de duas plataformas para os testes experimentais. Nas plataformas de software livre de BDA foi usado o mesmo conjunto de dados assim como a mesma configuração de hardware e software. Na comparação das duas plataformas, demonstrou que a HPCC Systems Platform é mais eficiente e confiável que a Hortonworks Data Platform. Em particular, as PME portuguesas devem considerar as plataformas BDA como uma oportunidade de obter vantagem competitiva e melhorar os seus processos e, consequentemente, definir uma estratégia de TI e de negócio. Por fim, este é um trabalho sobre Big Data, que se espera que sirva como um convite e motivação para novos trabalhos de investigação.Figueiredo, Ana Maria Neves Almeida BaptistaREPOSITÓRIO P.PORTONereu, Jorge Filipe Cândido2018-11-20T01:30:18Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/11984urn:tid:201767520enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:32:05Zoai:recipp.ipp.pt:10400.22/11984Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:59:45.717539Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Open Source Platforms for Big Data Analytics |
title |
Open Source Platforms for Big Data Analytics |
spellingShingle |
Open Source Platforms for Big Data Analytics Nereu, Jorge Filipe Cândido Big Data Big Data Analytics BI Big Data Platforms |
title_short |
Open Source Platforms for Big Data Analytics |
title_full |
Open Source Platforms for Big Data Analytics |
title_fullStr |
Open Source Platforms for Big Data Analytics |
title_full_unstemmed |
Open Source Platforms for Big Data Analytics |
title_sort |
Open Source Platforms for Big Data Analytics |
author |
Nereu, Jorge Filipe Cândido |
author_facet |
Nereu, Jorge Filipe Cândido |
author_role |
author |
dc.contributor.none.fl_str_mv |
Figueiredo, Ana Maria Neves Almeida Baptista REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Nereu, Jorge Filipe Cândido |
dc.subject.por.fl_str_mv |
Big Data Big Data Analytics BI Big Data Platforms |
topic |
Big Data Big Data Analytics BI Big Data Platforms |
description |
O conceito de Big Data tem tido um grande impacto no campo da tecnologia, em particular na gestão e análise de enormes volumes de informação. Atualmente, as organizações consideram o Big Data como uma oportunidade para gerir e explorar os seus dados o máximo possível, com o objetivo de apoiar as suas decisões dentro das diferentes áreas operacionais. Assim, é necessário analisar vários conceitos sobre o Big Data e o Big Data Analytics, incluindo definições, características, vantagens e desafios. As ferramentas de Business Intelligence (BI), juntamente com a geração de conhecimento, são conceitos fundamentais para o processo de tomada de decisão e transformação da informação. Ao investigar as plataformas de Big Data, as práticas industriais atuais e as tendências relacionadas com o mundo da investigação, é possível entender o impacto do Big Data Analytics nas pequenas organizações. Este trabalho pretende propor soluções para as micro, pequenas ou médias empresas (PME) que têm um grande impacto na economia portuguesa, dado que representam a maioria do tecido empresarial. As plataformas de código aberto para o Big Data Analytics oferecem uma grande oportunidade de inovação nas PMEs. Este trabalho de pesquisa apresenta uma análise comparativa das funcionalidades e características das plataformas e os passos a serem tomados para uma análise mais profunda e comparativa. Após a análise comparativa, apresentamos uma avaliação e seleção de plataformas Big Data Analytics (BDA) usando e adaptando a metodologia QSOS (Qualification and Selection of software Open Source) para qualificação e seleção de software open-source. O resultado desta avaliação e seleção traduziu-se na eleição de duas plataformas para os testes experimentais. Nas plataformas de software livre de BDA foi usado o mesmo conjunto de dados assim como a mesma configuração de hardware e software. Na comparação das duas plataformas, demonstrou que a HPCC Systems Platform é mais eficiente e confiável que a Hortonworks Data Platform. Em particular, as PME portuguesas devem considerar as plataformas BDA como uma oportunidade de obter vantagem competitiva e melhorar os seus processos e, consequentemente, definir uma estratégia de TI e de negócio. Por fim, este é um trabalho sobre Big Data, que se espera que sirva como um convite e motivação para novos trabalhos de investigação. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2018-11-20T01:30:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/11984 urn:tid:201767520 |
url |
http://hdl.handle.net/10400.22/11984 |
identifier_str_mv |
urn:tid:201767520 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600790517776384 |