Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)

Bibliographic Details
Main Author: Baptista, Catarina Borges
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/175596
Summary: Abstract Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), affects over 30% of the global adult population. This condition includes a range of liver disorders, from steatosis (metabolic dysfunction-associated steatotic liver, MASL) to more severe stages such as metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis, which can progress to cirrhosis and hepatocellular carcinoma. Effective therapies for MASLD are limited due to its multifactorial nature, which involves complex interactions among genetic, dietary, lifestyle, and metabolic factors. The interplay of processes which lead to lipotoxicity, insulin resistance, oxidative stress, mitochondrial dysfunction, ferroptosis, and inflammation in MASLD are not fully understood. Studies addressing MASLD have been hampered primarily due to the limitations of in vivo models and the lack of suitable in vitro models, particularly regarding the lack of accurate representation of chronic inflammation. This research project aimed to develop in vitro 3D hepatic models to address these gaps, specifically by creating (i) spheroids of cultured human hepatocytes and (ii) liver organoids that combine human hepatocytes with primary non-parenchymal cells. MASLD-like conditions could be induced in these models by exposing them to a combination of energy substrates. The resulting spheroids and organoids exhibited key MASLD characteristics, including steatosis, inflammation, oxidative and mitochondrial stress, and disrupted liver functions, such as dysregulated albumin-, bilirubin-, and cholesterol-homeostasis, along with elevated inflammatory markers. Notably, the organoid model, with its multiple liver cell types, demonstrated greater tolerance to hepatic functional disruption compared to hepatocyte spheroids, reflected by a more moderate and balanced inflammatory response. Overall, these findings demonstrate that the developed liver organoid serves as an effective 3D multicellular model capable of mimicking MASLD development and pathology. This model holds significant value for studying the pathophysiological pathways underlying MASLD, potentially informing future therapeutic strategies and aiding in the identification of diagnostic and prognostic biomarkers.
id RCAP_930e7b946d761dbd7ed2289ac19f07e9
oai_identifier_str oai:run.unl.pt:10362/175596
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)3D-Organotypicnon-alcoholicfatty liverCiências MédicasAbstract Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), affects over 30% of the global adult population. This condition includes a range of liver disorders, from steatosis (metabolic dysfunction-associated steatotic liver, MASL) to more severe stages such as metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis, which can progress to cirrhosis and hepatocellular carcinoma. Effective therapies for MASLD are limited due to its multifactorial nature, which involves complex interactions among genetic, dietary, lifestyle, and metabolic factors. The interplay of processes which lead to lipotoxicity, insulin resistance, oxidative stress, mitochondrial dysfunction, ferroptosis, and inflammation in MASLD are not fully understood. Studies addressing MASLD have been hampered primarily due to the limitations of in vivo models and the lack of suitable in vitro models, particularly regarding the lack of accurate representation of chronic inflammation. This research project aimed to develop in vitro 3D hepatic models to address these gaps, specifically by creating (i) spheroids of cultured human hepatocytes and (ii) liver organoids that combine human hepatocytes with primary non-parenchymal cells. MASLD-like conditions could be induced in these models by exposing them to a combination of energy substrates. The resulting spheroids and organoids exhibited key MASLD characteristics, including steatosis, inflammation, oxidative and mitochondrial stress, and disrupted liver functions, such as dysregulated albumin-, bilirubin-, and cholesterol-homeostasis, along with elevated inflammatory markers. Notably, the organoid model, with its multiple liver cell types, demonstrated greater tolerance to hepatic functional disruption compared to hepatocyte spheroids, reflected by a more moderate and balanced inflammatory response. Overall, these findings demonstrate that the developed liver organoid serves as an effective 3D multicellular model capable of mimicking MASLD development and pathology. This model holds significant value for studying the pathophysiological pathways underlying MASLD, potentially informing future therapeutic strategies and aiding in the identification of diagnostic and prognostic biomarkers.Resumo A doença hepática esteatótica associada a disfunção metabólica (MASLD), anteriormente conhecida como doença hepática gordurosa não alcoólica (NAFLD), afeta mais de 30% da população adulta global. Esta condição abrange distúrbios hepáticos, desde a esteatose (fígado esteatótico associado à disfunção metabólica, MASL) até estágios mais graves, como a esteato-hepatite associada à disfunção metabólica (MASH) e fibrose, podendo progredir para cirrose e carcinoma hepatocelular. O tratamento é limitado devido à natureza multifatorial da patologia, que envolve interações complexas entre fatores genéticos, dietéticos, de estilo de vida e metabólicos. A interação de processos que conduzem à lipotoxicidade, resistência à insulina, stress oxidativo, disfunção mitocondrial, ferroptose e inflamação, em MASLD, não é totalmente compreendida. Os estudos têm sido dificultados devido às limitações dos modelos in vivo e à falta de modelos in vitro com relevância clínica, especialmente na representação precisa da inflamação crónica. Este projeto teve como objetivo desenvolver modelos hepáticos 3D in vitro para colmatar estas lacunas, através da criação de (i) esferoides de hepatócitos humanos e (ii) organoides hepáticos que combinam hepatócitos humanos com células não parenquimatosas primárias. Condições semelhantes à MASLD foram induzidas nestes modelos, expondo-os a uma combinação de substratos energéticos. Os esferoides e organoides resultantes exibiram características chave da patologia, incluindo esteatose, inflamação, stress oxidativo e mitocondrial, e funções hepáticas alteradas, como homeostase desregulada de albumina, bilirrubina e colesterol, juntamente com níveis elevados de marcadores inflamatórios. O modelo de organoide, com a sua complexidade celular, demonstrou maior tolerância à disfunção hepática em comparação com os esferoides, apresentando uma resposta inflamatória mais moderada e equilibrada. Estes resultados demonstram que o organoide hepático desenvolvido é um modelo multicelular 3D capaz de mimetizar os parâmetros patológicos e a progressão da MASLD, sendo uma mais-valia para o estudo das vias fisiopatológicas subjacentes e auxiliando o desenvolvimento de futuras terapias e biomarcadores.Esteves, Francisco Vaz de CarvalhoRUNBaptista, Catarina Borges2024-11-202026-11-20T00:00:00Z2024-11-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175596TID:203735412enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-25T01:38:13Zoai:run.unl.pt:10362/175596Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:56.177790Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
title Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
spellingShingle Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
Baptista, Catarina Borges
3D-Organotypic
non-alcoholic
fatty liver
Ciências Médicas
title_short Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
title_full Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
title_fullStr Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
title_full_unstemmed Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
title_sort Development of specialized multicellular 3D-Organotypic models to evaluate pathogenic mechanisms in non-alcoholic fatty liver disease (NAFLD)
author Baptista, Catarina Borges
author_facet Baptista, Catarina Borges
author_role author
dc.contributor.none.fl_str_mv Esteves, Francisco Vaz de Carvalho
RUN
dc.contributor.author.fl_str_mv Baptista, Catarina Borges
dc.subject.por.fl_str_mv 3D-Organotypic
non-alcoholic
fatty liver
Ciências Médicas
topic 3D-Organotypic
non-alcoholic
fatty liver
Ciências Médicas
description Abstract Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), affects over 30% of the global adult population. This condition includes a range of liver disorders, from steatosis (metabolic dysfunction-associated steatotic liver, MASL) to more severe stages such as metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis, which can progress to cirrhosis and hepatocellular carcinoma. Effective therapies for MASLD are limited due to its multifactorial nature, which involves complex interactions among genetic, dietary, lifestyle, and metabolic factors. The interplay of processes which lead to lipotoxicity, insulin resistance, oxidative stress, mitochondrial dysfunction, ferroptosis, and inflammation in MASLD are not fully understood. Studies addressing MASLD have been hampered primarily due to the limitations of in vivo models and the lack of suitable in vitro models, particularly regarding the lack of accurate representation of chronic inflammation. This research project aimed to develop in vitro 3D hepatic models to address these gaps, specifically by creating (i) spheroids of cultured human hepatocytes and (ii) liver organoids that combine human hepatocytes with primary non-parenchymal cells. MASLD-like conditions could be induced in these models by exposing them to a combination of energy substrates. The resulting spheroids and organoids exhibited key MASLD characteristics, including steatosis, inflammation, oxidative and mitochondrial stress, and disrupted liver functions, such as dysregulated albumin-, bilirubin-, and cholesterol-homeostasis, along with elevated inflammatory markers. Notably, the organoid model, with its multiple liver cell types, demonstrated greater tolerance to hepatic functional disruption compared to hepatocyte spheroids, reflected by a more moderate and balanced inflammatory response. Overall, these findings demonstrate that the developed liver organoid serves as an effective 3D multicellular model capable of mimicking MASLD development and pathology. This model holds significant value for studying the pathophysiological pathways underlying MASLD, potentially informing future therapeutic strategies and aiding in the identification of diagnostic and prognostic biomarkers.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-20
2024-11-20T00:00:00Z
2026-11-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/175596
TID:203735412
url http://hdl.handle.net/10362/175596
identifier_str_mv TID:203735412
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597981194977280