Modelling of an electromagnetic generator using artificial neural networks

Bibliographic Details
Main Author: Rocha, Renato Miguel Emílio
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/23608
Summary: The increasing necessity for autonomous functioning systems alied with comsumption reduction by microelectronic devices over the last years, has motivated the research on self-powering devices for remote applications. Developing an energy harvestring device for a determined application requires its study and optimization. Therefore, modeling the dynamics of the system for simulation purposes becomes mandatory. The use of analytical mathematical models or FEM is a standard approach for the development of computable models. However, this approach reveals to be time-consuming due to temporal restrictions established not only by the model development but also by its simulation. This work investigates the application of Artificial Neural Networks on the modeling of magnetic levitation systems for energy harvesting purposes. The data collection implied by a Neural Network approach demanded the development of a device suitable for the acquirement of information intrinsic to the system. A testing station was built with the goal to induce rotational excitations on the device and acquire the motion dynamics of the levitation magnet. Different network architectures and implementation techniques are approached in this work in order to optimize the characteristics of the model. From the different approaches taken for proper model implementation, the configuration named in this work as NARX BROC allowed the attainment of correlation values above 95% for simulations inside and outside the training range, when compared with experimental results. Also, the performance of the developped generator is analyzed and discussed according to intended applications
id RCAP_9204c3a28b49adb7a3a7062fde17991a
oai_identifier_str oai:ria.ua.pt:10773/23608
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modelling of an electromagnetic generator using artificial neural networksRedes neuronaisEficiência energéticaArquiteturas de redes de computadoresThe increasing necessity for autonomous functioning systems alied with comsumption reduction by microelectronic devices over the last years, has motivated the research on self-powering devices for remote applications. Developing an energy harvestring device for a determined application requires its study and optimization. Therefore, modeling the dynamics of the system for simulation purposes becomes mandatory. The use of analytical mathematical models or FEM is a standard approach for the development of computable models. However, this approach reveals to be time-consuming due to temporal restrictions established not only by the model development but also by its simulation. This work investigates the application of Artificial Neural Networks on the modeling of magnetic levitation systems for energy harvesting purposes. The data collection implied by a Neural Network approach demanded the development of a device suitable for the acquirement of information intrinsic to the system. A testing station was built with the goal to induce rotational excitations on the device and acquire the motion dynamics of the levitation magnet. Different network architectures and implementation techniques are approached in this work in order to optimize the characteristics of the model. From the different approaches taken for proper model implementation, the configuration named in this work as NARX BROC allowed the attainment of correlation values above 95% for simulations inside and outside the training range, when compared with experimental results. Also, the performance of the developped generator is analyzed and discussed according to intended applicationsA crescente necessidade de sistemas de funcionamento autónomo aliada à redução de consumo por parte dos dispositivos microeletrónicos ao longo dos últimos anos, tem motivado a investigação de dispositivos para auto geração. O desenvolvimento de um dispositivo para energy harvesting, considerando uma determinada aplicação, requer o seu estudo e otimização. Consequentemente, a modelação do sistema para efeitos de simulação torna-se imperativa. A utilização de modelos matemáticos analíticos ou FEM é uma abordagem standard no desenvolvimento de um modelo para computação. No entanto, estas abordagens apresentam-se morosas, devido às restições temporais estabelecidas não só pelo desenvolvimento do modelo, mas também pela sua simulação. Neste trabalho, a aplicação de Redes Neuronais Artificiais para a modelação da dinâmica de um harvester baseado em levitação magnética é investigada. A recolha de dados requerida pela metodologia das Redes Neuronais Artificiais impôs o desenvolvimento de um dispositivo adequado para a aquisição de dados intrínsecos ao sistema. Uma estação de testes foi construída com o objetivo de induzir excitações rotacionais no dispositivo e adquirir a dinâmica de movimento mecânico dos ímanes em levitação. Diferentes arquiteturas de redes e técnicas de implementação são abordadas neste trabalho, de modo a otimizar as características do modelo. Das diferentes abordagens tidas para implementação de um modelo de redes neuronais, a configuração denominada neste trabalho como NARX BROC permitiu a obtenção de correlações superiores a 95% para simulações dentro e fora da gama de treino, quando comparadas com resultados experimentais. O desempenho do gerador desenvolvido é também analisado e discutido de acordo com aplicações pretendidasUniversidade de Aveiro2020-01-04T00:00:00Z2018-01-04T00:00:00Z2018-01-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/23608TID:201944332engRocha, Renato Miguel Emílioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:16:08Zoai:ria.ua.pt:10773/23608Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:02:44.831628Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modelling of an electromagnetic generator using artificial neural networks
title Modelling of an electromagnetic generator using artificial neural networks
spellingShingle Modelling of an electromagnetic generator using artificial neural networks
Rocha, Renato Miguel Emílio
Redes neuronais
Eficiência energética
Arquiteturas de redes de computadores
title_short Modelling of an electromagnetic generator using artificial neural networks
title_full Modelling of an electromagnetic generator using artificial neural networks
title_fullStr Modelling of an electromagnetic generator using artificial neural networks
title_full_unstemmed Modelling of an electromagnetic generator using artificial neural networks
title_sort Modelling of an electromagnetic generator using artificial neural networks
author Rocha, Renato Miguel Emílio
author_facet Rocha, Renato Miguel Emílio
author_role author
dc.contributor.author.fl_str_mv Rocha, Renato Miguel Emílio
dc.subject.por.fl_str_mv Redes neuronais
Eficiência energética
Arquiteturas de redes de computadores
topic Redes neuronais
Eficiência energética
Arquiteturas de redes de computadores
description The increasing necessity for autonomous functioning systems alied with comsumption reduction by microelectronic devices over the last years, has motivated the research on self-powering devices for remote applications. Developing an energy harvestring device for a determined application requires its study and optimization. Therefore, modeling the dynamics of the system for simulation purposes becomes mandatory. The use of analytical mathematical models or FEM is a standard approach for the development of computable models. However, this approach reveals to be time-consuming due to temporal restrictions established not only by the model development but also by its simulation. This work investigates the application of Artificial Neural Networks on the modeling of magnetic levitation systems for energy harvesting purposes. The data collection implied by a Neural Network approach demanded the development of a device suitable for the acquirement of information intrinsic to the system. A testing station was built with the goal to induce rotational excitations on the device and acquire the motion dynamics of the levitation magnet. Different network architectures and implementation techniques are approached in this work in order to optimize the characteristics of the model. From the different approaches taken for proper model implementation, the configuration named in this work as NARX BROC allowed the attainment of correlation values above 95% for simulations inside and outside the training range, when compared with experimental results. Also, the performance of the developped generator is analyzed and discussed according to intended applications
publishDate 2018
dc.date.none.fl_str_mv 2018-01-04T00:00:00Z
2018-01-04
2020-01-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/23608
TID:201944332
url http://hdl.handle.net/10773/23608
identifier_str_mv TID:201944332
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594242307457024