Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging

Bibliographic Details
Main Author: Paz, Maria Catarina
Publication Date: 2020
Other Authors: Farzamian, Mohammad, Paz, Ana Marta, Castanheira, Nádia Luísa, Gonçalves, Maria Conceição, Santos, Fernando Monteiro
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/36130
Summary: LezíriaGrandedeVilaFrancadeXira,locatedinPortugal,isanimportantagriculturalsystemwhere soil faces the risk of salinization due to climate change, as the level and salinity of groundwater are likely to increase as a result of the rise of the sea water level and consequently of the estuary. These changes can also affect the salinity of the irrigation water which is collected upstream of the estuary. Soil salinity can be assessed over large areas by the following rationale: (1) use of electromagnetic induction (EMI) to measure the soil appar- ent electrical conductivity (ECa, mS m−1); (2) inversion of ECa to obtain electromagnetic conductivity imaging (EMCI) which provides the spatial distribution of the soil electrical conductivity (σ,mSm−1); (3) calibration process consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract (ECe, dS m−1), used as a proxy for soil salinity; and (4) conversion of EMCI into salinity cross sections using the obtained calibration equation. In this study, EMI surveys and soil sampling were carried out between May 2017 and October 2018 at four locations with different salinity levels across the study area of Lezíria de Vila Franca. A previously developed regional calibration was used for predicting ECe from EMCI. Using time-lapse EMCI data, this study aims (1) to evaluate the ability of the regional calibration to predict soil salinity and (2) to perform a preliminary qualitative analysis of soil salinity dynamics in the study area. The validation analysis showed that ECe was predicted with a root mean square error (RMSE) of 3.14 dS m−1 in a range of 52.35 dS m−1, slightly overesti- mated (−1.23 dS m−1), with a strong Lin’s concordance correlation coefficient (CCC) of 0.94 and high linearity between measured and predicted data (R2 = 0.88). It was also observed that the prediction ability of the regional calibration is more influenced by spatial variability of data than temporal variability of data. Soil salinity cross sections were generated for each date and location of data collection, revealing qualitative salinity fluctuations related to the input of salts and water either through irrigation, precipitation, or level and salinity of groundwater. Time-lapse EMCI is developing into a valid methodology for evaluating the risk of soil salinization, so it can further support the evaluation and adoption of proper agricultural management strategies, especially in irrigated areas, where continuous monitoring of soil salinity dynamics is required.
id RCAP_919f13c2fa75ac188820626f397989fb
oai_identifier_str oai:comum.rcaap.pt:10400.26/36130
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imagingLezíriaGrandedeVilaFrancadeXira,locatedinPortugal,isanimportantagriculturalsystemwhere soil faces the risk of salinization due to climate change, as the level and salinity of groundwater are likely to increase as a result of the rise of the sea water level and consequently of the estuary. These changes can also affect the salinity of the irrigation water which is collected upstream of the estuary. Soil salinity can be assessed over large areas by the following rationale: (1) use of electromagnetic induction (EMI) to measure the soil appar- ent electrical conductivity (ECa, mS m−1); (2) inversion of ECa to obtain electromagnetic conductivity imaging (EMCI) which provides the spatial distribution of the soil electrical conductivity (σ,mSm−1); (3) calibration process consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract (ECe, dS m−1), used as a proxy for soil salinity; and (4) conversion of EMCI into salinity cross sections using the obtained calibration equation. In this study, EMI surveys and soil sampling were carried out between May 2017 and October 2018 at four locations with different salinity levels across the study area of Lezíria de Vila Franca. A previously developed regional calibration was used for predicting ECe from EMCI. Using time-lapse EMCI data, this study aims (1) to evaluate the ability of the regional calibration to predict soil salinity and (2) to perform a preliminary qualitative analysis of soil salinity dynamics in the study area. The validation analysis showed that ECe was predicted with a root mean square error (RMSE) of 3.14 dS m−1 in a range of 52.35 dS m−1, slightly overesti- mated (−1.23 dS m−1), with a strong Lin’s concordance correlation coefficient (CCC) of 0.94 and high linearity between measured and predicted data (R2 = 0.88). It was also observed that the prediction ability of the regional calibration is more influenced by spatial variability of data than temporal variability of data. Soil salinity cross sections were generated for each date and location of data collection, revealing qualitative salinity fluctuations related to the input of salts and water either through irrigation, precipitation, or level and salinity of groundwater. Time-lapse EMCI is developing into a valid methodology for evaluating the risk of soil salinization, so it can further support the evaluation and adoption of proper agricultural management strategies, especially in irrigated areas, where continuous monitoring of soil salinity dynamics is required.Repositório ComumPaz, Maria CatarinaFarzamian, MohammadPaz, Ana MartaCastanheira, Nádia LuísaGonçalves, Maria ConceiçãoSantos, Fernando Monteiro2021-04-07T10:52:27Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/36130eng10.5194/soil-6-499-2020info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T16:29:17Zoai:comum.rcaap.pt:10400.26/36130Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:53:07.572792Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
title Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
spellingShingle Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
Paz, Maria Catarina
title_short Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
title_full Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
title_fullStr Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
title_full_unstemmed Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
title_sort Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
author Paz, Maria Catarina
author_facet Paz, Maria Catarina
Farzamian, Mohammad
Paz, Ana Marta
Castanheira, Nádia Luísa
Gonçalves, Maria Conceição
Santos, Fernando Monteiro
author_role author
author2 Farzamian, Mohammad
Paz, Ana Marta
Castanheira, Nádia Luísa
Gonçalves, Maria Conceição
Santos, Fernando Monteiro
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Paz, Maria Catarina
Farzamian, Mohammad
Paz, Ana Marta
Castanheira, Nádia Luísa
Gonçalves, Maria Conceição
Santos, Fernando Monteiro
description LezíriaGrandedeVilaFrancadeXira,locatedinPortugal,isanimportantagriculturalsystemwhere soil faces the risk of salinization due to climate change, as the level and salinity of groundwater are likely to increase as a result of the rise of the sea water level and consequently of the estuary. These changes can also affect the salinity of the irrigation water which is collected upstream of the estuary. Soil salinity can be assessed over large areas by the following rationale: (1) use of electromagnetic induction (EMI) to measure the soil appar- ent electrical conductivity (ECa, mS m−1); (2) inversion of ECa to obtain electromagnetic conductivity imaging (EMCI) which provides the spatial distribution of the soil electrical conductivity (σ,mSm−1); (3) calibration process consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract (ECe, dS m−1), used as a proxy for soil salinity; and (4) conversion of EMCI into salinity cross sections using the obtained calibration equation. In this study, EMI surveys and soil sampling were carried out between May 2017 and October 2018 at four locations with different salinity levels across the study area of Lezíria de Vila Franca. A previously developed regional calibration was used for predicting ECe from EMCI. Using time-lapse EMCI data, this study aims (1) to evaluate the ability of the regional calibration to predict soil salinity and (2) to perform a preliminary qualitative analysis of soil salinity dynamics in the study area. The validation analysis showed that ECe was predicted with a root mean square error (RMSE) of 3.14 dS m−1 in a range of 52.35 dS m−1, slightly overesti- mated (−1.23 dS m−1), with a strong Lin’s concordance correlation coefficient (CCC) of 0.94 and high linearity between measured and predicted data (R2 = 0.88). It was also observed that the prediction ability of the regional calibration is more influenced by spatial variability of data than temporal variability of data. Soil salinity cross sections were generated for each date and location of data collection, revealing qualitative salinity fluctuations related to the input of salts and water either through irrigation, precipitation, or level and salinity of groundwater. Time-lapse EMCI is developing into a valid methodology for evaluating the risk of soil salinization, so it can further support the evaluation and adoption of proper agricultural management strategies, especially in irrigated areas, where continuous monitoring of soil salinity dynamics is required.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2021-04-07T10:52:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/36130
url http://hdl.handle.net/10400.26/36130
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5194/soil-6-499-2020
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602817008336897