Lie groups with all left-invariant semi-riemannian metrics complete

Bibliographic Details
Main Author: Ferreira, Ana Cristina
Publication Date: 2024
Other Authors: Elshafei, Ahmed, Sánchez, Miguel, Zeghib, Abdelghani
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/93582
Summary: For each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.
id RCAP_8f4af72754ed9660ceb68a994cff3efb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/93582
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Lie groups with all left-invariant semi-riemannian metrics completeSemi-riemannian metricsLie groupsGeodesic completenessLinear growthCiências Naturais::MatemáticasFor each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.PID2020-116126GB-I00 (MCIN/AEI/10.13039/501100011033)American Mathematical SocietyUniversidade do MinhoFerreira, Ana CristinaElshafei, AhmedSánchez, MiguelZeghib, Abdelghani2024-062024-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/93582engElshafei, A., Ferreira, A. C., Sánchez, M., & Zeghib, A. (2024, June 20). Lie groups with all left-invariant semi-Riemannian metrics complete. Transactions of the American Mathematical Society. American Mathematical Society (AMS). http://doi.org/10.1090/tran/91600002-99471088-685010.1090/tran/9160https://www.ams.org/journals/tran/2024-377-08/S0002-9947-2024-09160-2/home.htmlinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-29T01:47:39Zoai:repositorium.sdum.uminho.pt:1822/93582Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:11:56.556338Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Lie groups with all left-invariant semi-riemannian metrics complete
title Lie groups with all left-invariant semi-riemannian metrics complete
spellingShingle Lie groups with all left-invariant semi-riemannian metrics complete
Ferreira, Ana Cristina
Semi-riemannian metrics
Lie groups
Geodesic completeness
Linear growth
Ciências Naturais::Matemáticas
title_short Lie groups with all left-invariant semi-riemannian metrics complete
title_full Lie groups with all left-invariant semi-riemannian metrics complete
title_fullStr Lie groups with all left-invariant semi-riemannian metrics complete
title_full_unstemmed Lie groups with all left-invariant semi-riemannian metrics complete
title_sort Lie groups with all left-invariant semi-riemannian metrics complete
author Ferreira, Ana Cristina
author_facet Ferreira, Ana Cristina
Elshafei, Ahmed
Sánchez, Miguel
Zeghib, Abdelghani
author_role author
author2 Elshafei, Ahmed
Sánchez, Miguel
Zeghib, Abdelghani
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ferreira, Ana Cristina
Elshafei, Ahmed
Sánchez, Miguel
Zeghib, Abdelghani
dc.subject.por.fl_str_mv Semi-riemannian metrics
Lie groups
Geodesic completeness
Linear growth
Ciências Naturais::Matemáticas
topic Semi-riemannian metrics
Lie groups
Geodesic completeness
Linear growth
Ciências Naturais::Matemáticas
description For each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
2024-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/93582
url https://hdl.handle.net/1822/93582
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Elshafei, A., Ferreira, A. C., Sánchez, M., & Zeghib, A. (2024, June 20). Lie groups with all left-invariant semi-Riemannian metrics complete. Transactions of the American Mathematical Society. American Mathematical Society (AMS). http://doi.org/10.1090/tran/9160
0002-9947
1088-6850
10.1090/tran/9160
https://www.ams.org/journals/tran/2024-377-08/S0002-9947-2024-09160-2/home.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597938435096576