Lie groups with all left-invariant semi-riemannian metrics complete
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/93582 |
Summary: | For each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions. |
id |
RCAP_8f4af72754ed9660ceb68a994cff3efb |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/93582 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Lie groups with all left-invariant semi-riemannian metrics completeSemi-riemannian metricsLie groupsGeodesic completenessLinear growthCiências Naturais::MatemáticasFor each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.PID2020-116126GB-I00 (MCIN/AEI/10.13039/501100011033)American Mathematical SocietyUniversidade do MinhoFerreira, Ana CristinaElshafei, AhmedSánchez, MiguelZeghib, Abdelghani2024-062024-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/93582engElshafei, A., Ferreira, A. C., Sánchez, M., & Zeghib, A. (2024, June 20). Lie groups with all left-invariant semi-Riemannian metrics complete. Transactions of the American Mathematical Society. American Mathematical Society (AMS). http://doi.org/10.1090/tran/91600002-99471088-685010.1090/tran/9160https://www.ams.org/journals/tran/2024-377-08/S0002-9947-2024-09160-2/home.htmlinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-29T01:47:39Zoai:repositorium.sdum.uminho.pt:1822/93582Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:11:56.556338Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Lie groups with all left-invariant semi-riemannian metrics complete |
title |
Lie groups with all left-invariant semi-riemannian metrics complete |
spellingShingle |
Lie groups with all left-invariant semi-riemannian metrics complete Ferreira, Ana Cristina Semi-riemannian metrics Lie groups Geodesic completeness Linear growth Ciências Naturais::Matemáticas |
title_short |
Lie groups with all left-invariant semi-riemannian metrics complete |
title_full |
Lie groups with all left-invariant semi-riemannian metrics complete |
title_fullStr |
Lie groups with all left-invariant semi-riemannian metrics complete |
title_full_unstemmed |
Lie groups with all left-invariant semi-riemannian metrics complete |
title_sort |
Lie groups with all left-invariant semi-riemannian metrics complete |
author |
Ferreira, Ana Cristina |
author_facet |
Ferreira, Ana Cristina Elshafei, Ahmed Sánchez, Miguel Zeghib, Abdelghani |
author_role |
author |
author2 |
Elshafei, Ahmed Sánchez, Miguel Zeghib, Abdelghani |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Ana Cristina Elshafei, Ahmed Sánchez, Miguel Zeghib, Abdelghani |
dc.subject.por.fl_str_mv |
Semi-riemannian metrics Lie groups Geodesic completeness Linear growth Ciências Naturais::Matemáticas |
topic |
Semi-riemannian metrics Lie groups Geodesic completeness Linear growth Ciências Naturais::Matemáticas |
description |
For each left-invariant semi-Riemannian metric g on a Lie group G, we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the com- pleteness of g. When the adjoint representation of Gsatisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g. We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K⋉ρ Rn , where K is the direct product of a compact and an abelian Lie group and ρ(K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 2024-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/93582 |
url |
https://hdl.handle.net/1822/93582 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Elshafei, A., Ferreira, A. C., Sánchez, M., & Zeghib, A. (2024, June 20). Lie groups with all left-invariant semi-Riemannian metrics complete. Transactions of the American Mathematical Society. American Mathematical Society (AMS). http://doi.org/10.1090/tran/9160 0002-9947 1088-6850 10.1090/tran/9160 https://www.ams.org/journals/tran/2024-377-08/S0002-9947-2024-09160-2/home.html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597938435096576 |