Modelling of rammed earth under shear loading
Main Author: | |
---|---|
Publication Date: | 2014 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/31276 |
Summary: | The intensive use of earth as a building material since ancient times resulted in an important and significant earthen built heritage currently existing worldwide spread. The rammed earth technique has a significant presence in this heritage, where it served to build from simple dwell-ings to fortresses. However, the high vulnerability of rammed earth constructions to decay agents and to seismic events puts in risk their further existence and the lives of millions of peo-ple. With respect to the seismic behaviour of rammed earth walls, the understanding and mod-elling of their shear behaviour are topics underdeveloped in the bibliography. Nevertheless, these topics are of extreme importance in the preservation and strengthening of rammed earth constructions. Therefore, this paper presents a numerical work aiming at modelling the non-linear behaviour of unstabilised rammed earth under shear loading, resorting to the finite ele-ments method (FEM). The models were used to simulate the behaviour of a set of rammed earth wallets tested under diagonal compression. Both macro- and micro-modelling approach-es were considered, where the objective of this last approach was to evaluate the influence of apparent weakness of the interfaces between layers on the shear behaviour. The total strain ro-tating crack model (TSCRM) was used to simulate the behaviour of the rammed earth material, while the Mohr-Coulomb failure criterion was used to simulate the behaviour of interfaces be-tween layers. Furthermore, uncertainties related to the definition of the input parameters re-quired performing a sensitivity analysis. The numerical models achieved good agreement with the experimental results and the compressive strength, the Poisson’s ratio, the tensile strength and the tensile fracture energy revealed to be the most important parameters in the analyses. |
id |
RCAP_8e617263c8449cf8ba41d1c9920086f3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/31276 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Modelling of rammed earth under shear loadingRammed earthDiagonal-compressionShear behaviourFEM modellingEngenharia e Tecnologia::Engenharia CivilThe intensive use of earth as a building material since ancient times resulted in an important and significant earthen built heritage currently existing worldwide spread. The rammed earth technique has a significant presence in this heritage, where it served to build from simple dwell-ings to fortresses. However, the high vulnerability of rammed earth constructions to decay agents and to seismic events puts in risk their further existence and the lives of millions of peo-ple. With respect to the seismic behaviour of rammed earth walls, the understanding and mod-elling of their shear behaviour are topics underdeveloped in the bibliography. Nevertheless, these topics are of extreme importance in the preservation and strengthening of rammed earth constructions. Therefore, this paper presents a numerical work aiming at modelling the non-linear behaviour of unstabilised rammed earth under shear loading, resorting to the finite ele-ments method (FEM). The models were used to simulate the behaviour of a set of rammed earth wallets tested under diagonal compression. Both macro- and micro-modelling approach-es were considered, where the objective of this last approach was to evaluate the influence of apparent weakness of the interfaces between layers on the shear behaviour. The total strain ro-tating crack model (TSCRM) was used to simulate the behaviour of the rammed earth material, while the Mohr-Coulomb failure criterion was used to simulate the behaviour of interfaces be-tween layers. Furthermore, uncertainties related to the definition of the input parameters re-quired performing a sensitivity analysis. The numerical models achieved good agreement with the experimental results and the compressive strength, the Poisson’s ratio, the tensile strength and the tensile fracture energy revealed to be the most important parameters in the analyses.Fundação para a Ciência e a Tecnologia (FCTUniversidade do MinhoSilva, Rui André MartinsOliveira, Daniel V.Micolli, L.Schueremans, Luc2014-10-142014-10-14T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/31276enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:48:05Zoai:repositorium.sdum.uminho.pt:1822/31276Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:30:31.417174Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Modelling of rammed earth under shear loading |
title |
Modelling of rammed earth under shear loading |
spellingShingle |
Modelling of rammed earth under shear loading Silva, Rui André Martins Rammed earth Diagonal-compression Shear behaviour FEM modelling Engenharia e Tecnologia::Engenharia Civil |
title_short |
Modelling of rammed earth under shear loading |
title_full |
Modelling of rammed earth under shear loading |
title_fullStr |
Modelling of rammed earth under shear loading |
title_full_unstemmed |
Modelling of rammed earth under shear loading |
title_sort |
Modelling of rammed earth under shear loading |
author |
Silva, Rui André Martins |
author_facet |
Silva, Rui André Martins Oliveira, Daniel V. Micolli, L. Schueremans, Luc |
author_role |
author |
author2 |
Oliveira, Daniel V. Micolli, L. Schueremans, Luc |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Silva, Rui André Martins Oliveira, Daniel V. Micolli, L. Schueremans, Luc |
dc.subject.por.fl_str_mv |
Rammed earth Diagonal-compression Shear behaviour FEM modelling Engenharia e Tecnologia::Engenharia Civil |
topic |
Rammed earth Diagonal-compression Shear behaviour FEM modelling Engenharia e Tecnologia::Engenharia Civil |
description |
The intensive use of earth as a building material since ancient times resulted in an important and significant earthen built heritage currently existing worldwide spread. The rammed earth technique has a significant presence in this heritage, where it served to build from simple dwell-ings to fortresses. However, the high vulnerability of rammed earth constructions to decay agents and to seismic events puts in risk their further existence and the lives of millions of peo-ple. With respect to the seismic behaviour of rammed earth walls, the understanding and mod-elling of their shear behaviour are topics underdeveloped in the bibliography. Nevertheless, these topics are of extreme importance in the preservation and strengthening of rammed earth constructions. Therefore, this paper presents a numerical work aiming at modelling the non-linear behaviour of unstabilised rammed earth under shear loading, resorting to the finite ele-ments method (FEM). The models were used to simulate the behaviour of a set of rammed earth wallets tested under diagonal compression. Both macro- and micro-modelling approach-es were considered, where the objective of this last approach was to evaluate the influence of apparent weakness of the interfaces between layers on the shear behaviour. The total strain ro-tating crack model (TSCRM) was used to simulate the behaviour of the rammed earth material, while the Mohr-Coulomb failure criterion was used to simulate the behaviour of interfaces be-tween layers. Furthermore, uncertainties related to the definition of the input parameters re-quired performing a sensitivity analysis. The numerical models achieved good agreement with the experimental results and the compressive strength, the Poisson’s ratio, the tensile strength and the tensile fracture energy revealed to be the most important parameters in the analyses. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-14 2014-10-14T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/31276 |
url |
http://hdl.handle.net/1822/31276 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595361020608512 |