MapIntel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10362/158052 |
Resumo: | Silva, D., & Bação, F. (2023). MapIntel: A visual analytics platform for competitive intelligence. Expert Systems, [e13445]. https://doi.org/https://www.authorea.com/doi/full/10.22541/au.166785335.50477185, https://doi.org/10.1111/exsy.13445 --- %ABS2% ---Funding Information: This work was supported by the (research grant under the DSAIPA/DS/0116/2019 project). Fundação para a Ciência e Tecnologia of Ministério da Ciência e Tecnologia e Ensino Superior |
id |
RCAP_8e3e9adecd3857a4e840e6dac65ba45b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/158052 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
MapIntelA visual analytics platform for competitive intelligencecompetitive intelligenceinformation retrievalsentence embeddingstopic modellingtransformer architecturevisual analyticsControl and Systems EngineeringTheoretical Computer ScienceComputational Theory and MathematicsArtificial IntelligenceSilva, D., & Bação, F. (2023). MapIntel: A visual analytics platform for competitive intelligence. Expert Systems, [e13445]. https://doi.org/https://www.authorea.com/doi/full/10.22541/au.166785335.50477185, https://doi.org/10.1111/exsy.13445 --- %ABS2% ---Funding Information: This work was supported by the (research grant under the DSAIPA/DS/0116/2019 project). Fundação para a Ciência e Tecnologia of Ministério da Ciência e Tecnologia e Ensino SuperiorCompetitive Intelligence allows an organization to keep up with market trends and foresee business opportunities. This practice is mainly performed by analysts scanning for any piece of valuable information in a myriad of dispersed and unstructured sources. Here we present MapIntel, a system for acquiring intelligence from vast collections of text data by representing each document as a multidimensional vector that captures its own semantics. The system is designed to handle complex Natural Language queries and visual exploration of the corpus, potentially aiding overburdened analysts in finding meaningful insights to help decision-making. The system searching module uses a retriever and re-ranker engine that first finds the closest neighbours to the query embedding and then sifts the results through a cross-encoder model that identifies the most relevant documents. The browsing or visualization module also leverages the embeddings by projecting them onto two dimensions while preserving the multidimensional landscape, resulting in a map where semantically related documents form topical clusters which we capture using topic modelling. This map aims at promoting a fast overview of the corpus while allowing a more detailed exploration and interactive information encountering process. We evaluate the system and its components on the 20 newsgroups data set, using the semantic document labels provided, and demonstrate the superiority of Transformer-based components. Finally, we present a prototype of the system in Python and show how some of its features can be used to acquire intelligence from a news article corpus we collected during a period of 8 months.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNSilva, DavidBação, Fernando2024-12-28T01:31:54Z2023-122023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfapplication/pdfhttp://hdl.handle.net/10362/158052eng0266-4720PURE: 72008278https://doi.org/10.22541/au.166785335.50477185info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-30T01:34:17Zoai:run.unl.pt:10362/158052Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:45:05.585819Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
MapIntel A visual analytics platform for competitive intelligence |
title |
MapIntel |
spellingShingle |
MapIntel Silva, David competitive intelligence information retrieval sentence embeddings topic modelling transformer architecture visual analytics Control and Systems Engineering Theoretical Computer Science Computational Theory and Mathematics Artificial Intelligence |
title_short |
MapIntel |
title_full |
MapIntel |
title_fullStr |
MapIntel |
title_full_unstemmed |
MapIntel |
title_sort |
MapIntel |
author |
Silva, David |
author_facet |
Silva, David Bação, Fernando |
author_role |
author |
author2 |
Bação, Fernando |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Silva, David Bação, Fernando |
dc.subject.por.fl_str_mv |
competitive intelligence information retrieval sentence embeddings topic modelling transformer architecture visual analytics Control and Systems Engineering Theoretical Computer Science Computational Theory and Mathematics Artificial Intelligence |
topic |
competitive intelligence information retrieval sentence embeddings topic modelling transformer architecture visual analytics Control and Systems Engineering Theoretical Computer Science Computational Theory and Mathematics Artificial Intelligence |
description |
Silva, D., & Bação, F. (2023). MapIntel: A visual analytics platform for competitive intelligence. Expert Systems, [e13445]. https://doi.org/https://www.authorea.com/doi/full/10.22541/au.166785335.50477185, https://doi.org/10.1111/exsy.13445 --- %ABS2% ---Funding Information: This work was supported by the (research grant under the DSAIPA/DS/0116/2019 project). Fundação para a Ciência e Tecnologia of Ministério da Ciência e Tecnologia e Ensino Superior |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 2023-12-01T00:00:00Z 2024-12-28T01:31:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/158052 |
url |
http://hdl.handle.net/10362/158052 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0266-4720 PURE: 72008278 https://doi.org/10.22541/au.166785335.50477185 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596935211057152 |