Extremal graphs for the sum of the two largest signless Laplacian eigenvalues

Bibliographic Details
Main Author: Oliveira, Carla Silva
Publication Date: 2015
Other Authors: Lima, Leonado de, Rama, Paula, Carvalho, Paula
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/16230
Summary: Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.
id RCAP_8e1beefaa11c5efb9bc94308f5a7cba0
oai_identifier_str oai:ria.ua.pt:10773/16230
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Extremal graphs for the sum of the two largest signless Laplacian eigenvaluesSignless LaplacianSum of eigenvaluesExtremal graphsLet G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.ILAS–the International Linear Algebra Society (ILAS)2016-11-02T12:58:35Z2015-10-01T00:00:00Z2015-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16230eng1081-381010.13001/1081-3810.3143Oliveira, Carla SilvaLima, Leonado deRama, PaulaCarvalho, Paulainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:58:14Zoai:ria.ua.pt:10773/16230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:52:44.740420Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
title Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
spellingShingle Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
Oliveira, Carla Silva
Signless Laplacian
Sum of eigenvalues
Extremal graphs
title_short Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
title_full Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
title_fullStr Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
title_full_unstemmed Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
title_sort Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
author Oliveira, Carla Silva
author_facet Oliveira, Carla Silva
Lima, Leonado de
Rama, Paula
Carvalho, Paula
author_role author
author2 Lima, Leonado de
Rama, Paula
Carvalho, Paula
author2_role author
author
author
dc.contributor.author.fl_str_mv Oliveira, Carla Silva
Lima, Leonado de
Rama, Paula
Carvalho, Paula
dc.subject.por.fl_str_mv Signless Laplacian
Sum of eigenvalues
Extremal graphs
topic Signless Laplacian
Sum of eigenvalues
Extremal graphs
description Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01T00:00:00Z
2015-10
2016-11-02T12:58:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16230
url http://hdl.handle.net/10773/16230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1081-3810
10.13001/1081-3810.3143
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ILAS–the International Linear Algebra Society (ILAS)
publisher.none.fl_str_mv ILAS–the International Linear Algebra Society (ILAS)
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594159795011585