Extremal graphs for the sum of the two largest signless Laplacian eigenvalues
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/16230 |
Summary: | Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices. |
id |
RCAP_8e1beefaa11c5efb9bc94308f5a7cba0 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16230 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Extremal graphs for the sum of the two largest signless Laplacian eigenvaluesSignless LaplacianSum of eigenvaluesExtremal graphsLet G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.ILAS–the International Linear Algebra Society (ILAS)2016-11-02T12:58:35Z2015-10-01T00:00:00Z2015-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16230eng1081-381010.13001/1081-3810.3143Oliveira, Carla SilvaLima, Leonado deRama, PaulaCarvalho, Paulainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:58:14Zoai:ria.ua.pt:10773/16230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:52:44.740420Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
title |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
spellingShingle |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues Oliveira, Carla Silva Signless Laplacian Sum of eigenvalues Extremal graphs |
title_short |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
title_full |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
title_fullStr |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
title_full_unstemmed |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
title_sort |
Extremal graphs for the sum of the two largest signless Laplacian eigenvalues |
author |
Oliveira, Carla Silva |
author_facet |
Oliveira, Carla Silva Lima, Leonado de Rama, Paula Carvalho, Paula |
author_role |
author |
author2 |
Lima, Leonado de Rama, Paula Carvalho, Paula |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Oliveira, Carla Silva Lima, Leonado de Rama, Paula Carvalho, Paula |
dc.subject.por.fl_str_mv |
Signless Laplacian Sum of eigenvalues Extremal graphs |
topic |
Signless Laplacian Sum of eigenvalues Extremal graphs |
description |
Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-01T00:00:00Z 2015-10 2016-11-02T12:58:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16230 |
url |
http://hdl.handle.net/10773/16230 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1081-3810 10.13001/1081-3810.3143 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ILAS–the International Linear Algebra Society (ILAS) |
publisher.none.fl_str_mv |
ILAS–the International Linear Algebra Society (ILAS) |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594159795011585 |