Typing linear algebra: A biproduct-oriented approach
| Main Author: | |
|---|---|
| Publication Date: | 2013 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://repositorio.inesctec.pt/handle/123456789/6595 http://dx.doi.org/10.1016/j.scico.2012.07.012 |
Summary: | Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes it easy to calculate algorithms implementing matrix multiplication, the central operation of matrix algebra, ranging from its divide-and-conquer version to its vectorization implementation. From errant attempts to learn how particular products and coproducts emerge from biproducts, not only blocked matrix algebra is rediscovered but also a way of extending other operations (e.g. Gaussian elimination) blockwise, in a calculational style, is found. The prospect of building biproduct-based type checkers for computer algebra systems such as MATLAB (TM) is also considered. |
| id |
RCAP_8e1799838a805746b09c2d6b35647a53 |
|---|---|
| oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/6595 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Typing linear algebra: A biproduct-oriented approachInterested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes it easy to calculate algorithms implementing matrix multiplication, the central operation of matrix algebra, ranging from its divide-and-conquer version to its vectorization implementation. From errant attempts to learn how particular products and coproducts emerge from biproducts, not only blocked matrix algebra is rediscovered but also a way of extending other operations (e.g. Gaussian elimination) blockwise, in a calculational style, is found. The prospect of building biproduct-based type checkers for computer algebra systems such as MATLAB (TM) is also considered.2018-01-17T10:09:30Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6595http://dx.doi.org/10.1016/j.scico.2012.07.012engMacedo,HDJosé Nuno Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:20:52Zoai:repositorio.inesctec.pt:123456789/6595Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:56:59.583465Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Typing linear algebra: A biproduct-oriented approach |
| title |
Typing linear algebra: A biproduct-oriented approach |
| spellingShingle |
Typing linear algebra: A biproduct-oriented approach Macedo,HD |
| title_short |
Typing linear algebra: A biproduct-oriented approach |
| title_full |
Typing linear algebra: A biproduct-oriented approach |
| title_fullStr |
Typing linear algebra: A biproduct-oriented approach |
| title_full_unstemmed |
Typing linear algebra: A biproduct-oriented approach |
| title_sort |
Typing linear algebra: A biproduct-oriented approach |
| author |
Macedo,HD |
| author_facet |
Macedo,HD José Nuno Oliveira |
| author_role |
author |
| author2 |
José Nuno Oliveira |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Macedo,HD José Nuno Oliveira |
| description |
Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes it easy to calculate algorithms implementing matrix multiplication, the central operation of matrix algebra, ranging from its divide-and-conquer version to its vectorization implementation. From errant attempts to learn how particular products and coproducts emerge from biproducts, not only blocked matrix algebra is rediscovered but also a way of extending other operations (e.g. Gaussian elimination) blockwise, in a calculational style, is found. The prospect of building biproduct-based type checkers for computer algebra systems such as MATLAB (TM) is also considered. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2018-01-17T10:09:30Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/6595 http://dx.doi.org/10.1016/j.scico.2012.07.012 |
| url |
http://repositorio.inesctec.pt/handle/123456789/6595 http://dx.doi.org/10.1016/j.scico.2012.07.012 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597775160279040 |