Export Ready — 

Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces

Bibliographic Details
Main Author: Fabiola Costa
Publication Date: 2011
Other Authors: Isabel F Carvalho, Ronald C Montelaro, Gomes, P, Cristina C L Martins
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/82039
Summary: Bacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPS) are well-known components of the innate immune system that can be applied to over-come biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activity, high efficacy at very low concentrations, target specificity, anti-endotoxin activity, synergistic action with classical antibiotics, and low propensity for developing resistance. Therefore, the development of an antimicrobial coating with such properties would be worthwhile. The immobilization of AMPS onto a biomaterial surface has further advantages as it also helps to circumvent AMPs' potential limitations, such as short half-life and cytotoxicity associated with higher concentrations of soluble peptides. The studies discussed in the current review report on the impact of covalent immobilization of AMPs onto surfaces through different chemical coupling strategies, length of spacers, and peptide orientation and concentration. The overall results suggest that immobilized AMPs may be effective in the prevention of biofilm formation by reduction of microorganism survival post-contact with the coated biomaterial. Minimal cytotoxicity and long-term stability profiles were obtained by optimizing immobilization parameters, indicating a promising potential for the use of immobilized AMPs in clinical applications. On the other hand, the effects of tethering on mechanisms of action of AMPs have not yet been fully elucidated. Therefore, further studies are recommended to explore the real potential of immobilized AMPs in health applications as antimicrobial coatings of medical devices.
id RCAP_8e0ff7fbe320b2bffe246cb9fbbed79f
oai_identifier_str oai:repositorio-aberto.up.pt:10216/82039
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfacesEngenharia dos materiaisMaterials engineeringBacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPS) are well-known components of the innate immune system that can be applied to over-come biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activity, high efficacy at very low concentrations, target specificity, anti-endotoxin activity, synergistic action with classical antibiotics, and low propensity for developing resistance. Therefore, the development of an antimicrobial coating with such properties would be worthwhile. The immobilization of AMPS onto a biomaterial surface has further advantages as it also helps to circumvent AMPs' potential limitations, such as short half-life and cytotoxicity associated with higher concentrations of soluble peptides. The studies discussed in the current review report on the impact of covalent immobilization of AMPs onto surfaces through different chemical coupling strategies, length of spacers, and peptide orientation and concentration. The overall results suggest that immobilized AMPs may be effective in the prevention of biofilm formation by reduction of microorganism survival post-contact with the coated biomaterial. Minimal cytotoxicity and long-term stability profiles were obtained by optimizing immobilization parameters, indicating a promising potential for the use of immobilized AMPs in clinical applications. On the other hand, the effects of tethering on mechanisms of action of AMPs have not yet been fully elucidated. Therefore, further studies are recommended to explore the real potential of immobilized AMPs in health applications as antimicrobial coatings of medical devices.20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/82039eng1742-706110.1016/j.actbio.2010.11.005Fabiola CostaIsabel F CarvalhoRonald C MontelaroGomes, PCristina C L Martinsinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T16:59:32Zoai:repositorio-aberto.up.pt:10216/82039Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:59:34.065590Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
title Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
spellingShingle Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
Fabiola Costa
Engenharia dos materiais
Materials engineering
title_short Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
title_full Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
title_fullStr Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
title_full_unstemmed Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
title_sort Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces
author Fabiola Costa
author_facet Fabiola Costa
Isabel F Carvalho
Ronald C Montelaro
Gomes, P
Cristina C L Martins
author_role author
author2 Isabel F Carvalho
Ronald C Montelaro
Gomes, P
Cristina C L Martins
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fabiola Costa
Isabel F Carvalho
Ronald C Montelaro
Gomes, P
Cristina C L Martins
dc.subject.por.fl_str_mv Engenharia dos materiais
Materials engineering
topic Engenharia dos materiais
Materials engineering
description Bacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPS) are well-known components of the innate immune system that can be applied to over-come biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activity, high efficacy at very low concentrations, target specificity, anti-endotoxin activity, synergistic action with classical antibiotics, and low propensity for developing resistance. Therefore, the development of an antimicrobial coating with such properties would be worthwhile. The immobilization of AMPS onto a biomaterial surface has further advantages as it also helps to circumvent AMPs' potential limitations, such as short half-life and cytotoxicity associated with higher concentrations of soluble peptides. The studies discussed in the current review report on the impact of covalent immobilization of AMPs onto surfaces through different chemical coupling strategies, length of spacers, and peptide orientation and concentration. The overall results suggest that immobilized AMPs may be effective in the prevention of biofilm formation by reduction of microorganism survival post-contact with the coated biomaterial. Minimal cytotoxicity and long-term stability profiles were obtained by optimizing immobilization parameters, indicating a promising potential for the use of immobilized AMPs in clinical applications. On the other hand, the effects of tethering on mechanisms of action of AMPs have not yet been fully elucidated. Therefore, further studies are recommended to explore the real potential of immobilized AMPs in health applications as antimicrobial coatings of medical devices.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/82039
url https://hdl.handle.net/10216/82039
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-7061
10.1016/j.actbio.2010.11.005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599510085894144