3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/168833 |
Summary: | Cancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization. |
id |
RCAP_8ddf99493ea33805f9a5ec1db2d2dd13 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/168833 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applicationsImpressão 3DquitosanonanocelulosefotopolimerizaçãoSPIONsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaCancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization.O cancro é um dos maiores desafios da atualidade. As terapias mais frequentemente aplicadas, como a quimioterapia, causam muitas vezes toxicidade sistémica, pela falta de especificidade para as células tumorais. Os sistemas de administração de fármacos podem colmatar estes efeitos. Os hidrogéis, matrizes poliméricas reticuladas, são estudados para esta aplicação devido à sua porosidade e capacidade de inchamento. A impressão 3D, técnica que permite desenvolver estruturas através da deposição de tinta controlada por software, permite criar hidrogeis personalizados para administração de fármacos, com possibilidade de incorporação de nanopartículas de óxido de ferro superparamagnéticas (SPIONs). Estas podem ser utilizadas para hipertermia magnética, aumentando a temperatura no local do tumor. Esta dissertação focou-se em desenvolver hidrogéis de quitosano metacrilato (ChMA) impressos em 3D, reforçados com nanocristais de celulose (CNC) e com SPIONs incorporados. O processo de metacrilação do ChMA foi confirmado através da caraterização química e a análise térmica mostrou uma temperatura de decomposição deste polímero mais baixa que a do quitosano. A avaliação reológica das formulações desenvolvidas de tinta de ChMA, CNC e Irgacure 2959 demonstrou um comportamento aparente de pseudoplástico e um aumento da viscosidade com o aumento das concentrações de ChMA e CNC. Com base nestas conclusões, foram selecionadas duas formulações para impressão 3D, com resultados favoráveis numa delas após otimização dos parâmetros de impressão, exposição à luz UV e mecanismos de fotopolimerização. Esta formulação foi utilizada para produzir hidrogéis com recurso a moldes, que foram submetidos a testes mecânicos, aferindo sobre o seu comportamento sob forças de compressão. A análise morfológica por microscopia eletrónica de varrimento (SEM) revelou uma matriz porosa com uma distribuição homogénea de CNC. Os testes de inchamento indicaram uma rápida absorção de PBS seguida de estabilização. A adição de SPIONs aos hidrogéis levou à não fotopolimerização, quer em impressão 3D ou hidrogéis em molde. Este trabalho mostra uma fase inicial no desenvolvimento de um novo sistema impresso em 3D, abrangendo a síntese de materiais, a formulação da tinta, os processos de impressão e a caraterização da tinta e da estrutura.Fernandes, SuseteSoares, PaulaRUNCalado, Beatriz2025-04-02T00:31:43Z2024-05-212024-05-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/168833enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-14T01:37:43Zoai:run.unl.pt:10362/168833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:56:24.001375Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
title |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
spellingShingle |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications Calado, Beatriz Impressão 3D quitosano nanocelulose fotopolimerização SPIONs Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
title_short |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
title_full |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
title_fullStr |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
title_full_unstemmed |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
title_sort |
3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications |
author |
Calado, Beatriz |
author_facet |
Calado, Beatriz |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fernandes, Susete Soares, Paula RUN |
dc.contributor.author.fl_str_mv |
Calado, Beatriz |
dc.subject.por.fl_str_mv |
Impressão 3D quitosano nanocelulose fotopolimerização SPIONs Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
topic |
Impressão 3D quitosano nanocelulose fotopolimerização SPIONs Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
description |
Cancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-21 2024-05-21T00:00:00Z 2025-04-02T00:31:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/168833 |
url |
http://hdl.handle.net/10362/168833 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597074985189376 |