Export Ready — 

3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications

Bibliographic Details
Main Author: Calado, Beatriz
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/168833
Summary: Cancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization.
id RCAP_8ddf99493ea33805f9a5ec1db2d2dd13
oai_identifier_str oai:run.unl.pt:10362/168833
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applicationsImpressão 3DquitosanonanocelulosefotopolimerizaçãoSPIONsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaCancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization.O cancro é um dos maiores desafios da atualidade. As terapias mais frequentemente aplicadas, como a quimioterapia, causam muitas vezes toxicidade sistémica, pela falta de especificidade para as células tumorais. Os sistemas de administração de fármacos podem colmatar estes efeitos. Os hidrogéis, matrizes poliméricas reticuladas, são estudados para esta aplicação devido à sua porosidade e capacidade de inchamento. A impressão 3D, técnica que permite desenvolver estruturas através da deposição de tinta controlada por software, permite criar hidrogeis personalizados para administração de fármacos, com possibilidade de incorporação de nanopartículas de óxido de ferro superparamagnéticas (SPIONs). Estas podem ser utilizadas para hipertermia magnética, aumentando a temperatura no local do tumor. Esta dissertação focou-se em desenvolver hidrogéis de quitosano metacrilato (ChMA) impressos em 3D, reforçados com nanocristais de celulose (CNC) e com SPIONs incorporados. O processo de metacrilação do ChMA foi confirmado através da caraterização química e a análise térmica mostrou uma temperatura de decomposição deste polímero mais baixa que a do quitosano. A avaliação reológica das formulações desenvolvidas de tinta de ChMA, CNC e Irgacure 2959 demonstrou um comportamento aparente de pseudoplástico e um aumento da viscosidade com o aumento das concentrações de ChMA e CNC. Com base nestas conclusões, foram selecionadas duas formulações para impressão 3D, com resultados favoráveis numa delas após otimização dos parâmetros de impressão, exposição à luz UV e mecanismos de fotopolimerização. Esta formulação foi utilizada para produzir hidrogéis com recurso a moldes, que foram submetidos a testes mecânicos, aferindo sobre o seu comportamento sob forças de compressão. A análise morfológica por microscopia eletrónica de varrimento (SEM) revelou uma matriz porosa com uma distribuição homogénea de CNC. Os testes de inchamento indicaram uma rápida absorção de PBS seguida de estabilização. A adição de SPIONs aos hidrogéis levou à não fotopolimerização, quer em impressão 3D ou hidrogéis em molde. Este trabalho mostra uma fase inicial no desenvolvimento de um novo sistema impresso em 3D, abrangendo a síntese de materiais, a formulação da tinta, os processos de impressão e a caraterização da tinta e da estrutura.Fernandes, SuseteSoares, PaulaRUNCalado, Beatriz2025-04-02T00:31:43Z2024-05-212024-05-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/168833enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-14T01:37:43Zoai:run.unl.pt:10362/168833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:56:24.001375Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
title 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
spellingShingle 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
Calado, Beatriz
Impressão 3D
quitosano
nanocelulose
fotopolimerização
SPIONs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
title_short 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
title_full 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
title_fullStr 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
title_full_unstemmed 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
title_sort 3D printed hydrogels based on polysaccharides and magnetic nanoparticles for biomedical applications
author Calado, Beatriz
author_facet Calado, Beatriz
author_role author
dc.contributor.none.fl_str_mv Fernandes, Susete
Soares, Paula
RUN
dc.contributor.author.fl_str_mv Calado, Beatriz
dc.subject.por.fl_str_mv Impressão 3D
quitosano
nanocelulose
fotopolimerização
SPIONs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
topic Impressão 3D
quitosano
nanocelulose
fotopolimerização
SPIONs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
description Cancer is one of the most significant challenges humanity faces nowadays. The most commonly applied therapies, like chemotherapy, are not specific for tumour cells, causing systemic toxicity. Drug delivery systems are an approach to avoid these effects. Hydrogels, polymeric crosslinked matrices, are widely studied for this application due to their advantageous characteristics, like matrices porosity and swelling capacity. Hydrogels can be processed by 3D bioprinting, a technique to develop layer-by-layer structures through software-controlled bioink deposition, enabling customized systems for drug delivery applications. Hydrogels may also be coupled with Superparamagnetic Iron Oxide Nanoparticles (SPIONs). In a therapeutic approach named magnetic hyperthermia, these NPs cause the tumour temperature to rise when subjected to an Alternating Magnetic Field (AMF). This master thesis developed 3D bioprinted methacrylate chitosan (ChMA) hydrogels reinforced with Cellulose Nanocrystals (CNC) with SPIONs incorporated. The successful methacrylation process of ChMA was confirmed through chemical characterization, while thermal analysis indicated a lower decomposition temperature compared to chitosan. Subsequently, bioink formulations incorporating ChMA, CNC, and Irgacure 2959 as the photoinitiator were developed and assessed rheologically, demonstrating shear-thinning behaviour and increased viscosity with higher ChMA and CNC concentrations. Based on these findings, two formulations were selected for 3D bioprinting, with one yielding successful outcomes after optimization of printing parameters, UV light exposure, and photopolymerization mechanisms. This formulation was used to produce bulk hydrogels for characterization purposes. Mechanical tests on the obtained structures provided insights into their compression behaviour, while morphological analysis via Scanning Electron Microscopy (SEM) revealed a porous matrix with homogeneous CNC distribution. PBS absorption tests indicated rapid phosphate buffered saline uptake followed by stabilization. Despite initial attempts, the addition of SPIONs to the hydrogels was unsuccessful in achieving photocrosslinked structures or bulk hydrogels. This work represents an early stage in the development of a novel 3D bioprinted system, encompassing material synthesis, bioink formulation, bioprinting processes and bioink and structure characterization.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-21
2024-05-21T00:00:00Z
2025-04-02T00:31:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/168833
url http://hdl.handle.net/10362/168833
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597074985189376