Export Ready — 

Previsão de tempos de internamento de pacientes via técnicas de data mining

Bibliographic Details
Main Author: Caetano, Nuno Manuel Palhotas
Publication Date: 2013
Format: Master thesis
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/8078
Summary: Há mais de duas décadas que os hospitais começaram a armazenar a informação clínica electrónica nos seus sistemas de informação hospitalar. Cada vez mais, os hospitais recolhem grandes quantidades de dados através de novos métodos electrónicos de armazenamento de dados, permitindo o aumento do interesse nas áreas da descoberta de conhecimento em bases de dados e data mining (DM). Existe então a necessidade de investigar melhores métodos de análise de dados e automatizar esses procedimentos de modo a facilitar a criação de conhecimento. No passado, objetivos como a necessidade de reduzir o tempo de internamento, aumentar o número de camas disponíveis para novos internamentos, reduzir o tempo de espera na lista de espera cirúrgica e prestar melhores cuidados de saúde têm sido difíceis de cumprir. O DM é então o processo chave neste trabalho através da aplicação de algoritmos de aprendizagem. Esta dissertação irá focar-se no estudo de caso de uma instituição hospitalar nacional, com base nos dados oriundos do processo de internamento hospitalar entre 2001 e 2013. Obteve-se um modelo preditivo para tempos de internamento através da descoberta de comportamentos e padrões existentes no processo de internamento hospitalar, com base em técnicas de DM. A concepção de um modelo explicativo permitiu extrair conhecimento útil para a área de negócio hospitalar, possibilitando no futuro, a execução de um processo de internamento mais eficiente, otimizando o número de camas existentes no contexto hospitalar e evitando erros ou desvios no planeamento dos internamentos.
id RCAP_8a45dfa424721e01dbacf1335e4beae1
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/8078
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Previsão de tempos de internamento de pacientes via técnicas de data miningData mining --Inteligência empresarialTempos de internamentoCRISP-DMLength of stayBusiness intelligenceHá mais de duas décadas que os hospitais começaram a armazenar a informação clínica electrónica nos seus sistemas de informação hospitalar. Cada vez mais, os hospitais recolhem grandes quantidades de dados através de novos métodos electrónicos de armazenamento de dados, permitindo o aumento do interesse nas áreas da descoberta de conhecimento em bases de dados e data mining (DM). Existe então a necessidade de investigar melhores métodos de análise de dados e automatizar esses procedimentos de modo a facilitar a criação de conhecimento. No passado, objetivos como a necessidade de reduzir o tempo de internamento, aumentar o número de camas disponíveis para novos internamentos, reduzir o tempo de espera na lista de espera cirúrgica e prestar melhores cuidados de saúde têm sido difíceis de cumprir. O DM é então o processo chave neste trabalho através da aplicação de algoritmos de aprendizagem. Esta dissertação irá focar-se no estudo de caso de uma instituição hospitalar nacional, com base nos dados oriundos do processo de internamento hospitalar entre 2001 e 2013. Obteve-se um modelo preditivo para tempos de internamento através da descoberta de comportamentos e padrões existentes no processo de internamento hospitalar, com base em técnicas de DM. A concepção de um modelo explicativo permitiu extrair conhecimento útil para a área de negócio hospitalar, possibilitando no futuro, a execução de um processo de internamento mais eficiente, otimizando o número de camas existentes no contexto hospitalar e evitando erros ou desvios no planeamento dos internamentos.For more than two decades that hospitals began storing information related with electronic clinical information systems. Increasingly, hospitals collect large amounts of data through new methods of electronic data storage, allowing increased interest in the areas of knowledge discovery in databases and data mining (DM). There is thus a need to investigate improved methods of data analysis and automate these procedures to facilitate the creation of knowledge. In the past, objectives such as the need to reduce the length of stay, increase the number of beds available for new admissions, reduce the wait time on the waiting list and provide the best surgical care has been difficult to meet. DM is then the key process in this work by applying learning algorithms. This dissertation will focus on the case study of a national hospital, based on data from the process of hospitalization between 2001 and 2013. A predictive model was obtained for the length of stay, through the discovery of behaviors and patterns existing in the hospitalization process, based on DM techniques. The design of an explanatory model allowed extracting useful knowledge for hospital management, enabling the implementation of a rigorous admission process, optimizing the number of available hospital beds and avoiding errors or deviations in the admission plans.2014-12-11T18:02:51Z2013-01-01T00:00:00Z20132013-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/8078TID:201047845porCaetano, Nuno Manuel Palhotasinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:45:29Zoai:repositorio.iscte-iul.pt:10071/8078Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:06:21.847375Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Previsão de tempos de internamento de pacientes via técnicas de data mining
title Previsão de tempos de internamento de pacientes via técnicas de data mining
spellingShingle Previsão de tempos de internamento de pacientes via técnicas de data mining
Caetano, Nuno Manuel Palhotas
Data mining --
Inteligência empresarial
Tempos de internamento
CRISP-DM
Length of stay
Business intelligence
title_short Previsão de tempos de internamento de pacientes via técnicas de data mining
title_full Previsão de tempos de internamento de pacientes via técnicas de data mining
title_fullStr Previsão de tempos de internamento de pacientes via técnicas de data mining
title_full_unstemmed Previsão de tempos de internamento de pacientes via técnicas de data mining
title_sort Previsão de tempos de internamento de pacientes via técnicas de data mining
author Caetano, Nuno Manuel Palhotas
author_facet Caetano, Nuno Manuel Palhotas
author_role author
dc.contributor.author.fl_str_mv Caetano, Nuno Manuel Palhotas
dc.subject.por.fl_str_mv Data mining --
Inteligência empresarial
Tempos de internamento
CRISP-DM
Length of stay
Business intelligence
topic Data mining --
Inteligência empresarial
Tempos de internamento
CRISP-DM
Length of stay
Business intelligence
description Há mais de duas décadas que os hospitais começaram a armazenar a informação clínica electrónica nos seus sistemas de informação hospitalar. Cada vez mais, os hospitais recolhem grandes quantidades de dados através de novos métodos electrónicos de armazenamento de dados, permitindo o aumento do interesse nas áreas da descoberta de conhecimento em bases de dados e data mining (DM). Existe então a necessidade de investigar melhores métodos de análise de dados e automatizar esses procedimentos de modo a facilitar a criação de conhecimento. No passado, objetivos como a necessidade de reduzir o tempo de internamento, aumentar o número de camas disponíveis para novos internamentos, reduzir o tempo de espera na lista de espera cirúrgica e prestar melhores cuidados de saúde têm sido difíceis de cumprir. O DM é então o processo chave neste trabalho através da aplicação de algoritmos de aprendizagem. Esta dissertação irá focar-se no estudo de caso de uma instituição hospitalar nacional, com base nos dados oriundos do processo de internamento hospitalar entre 2001 e 2013. Obteve-se um modelo preditivo para tempos de internamento através da descoberta de comportamentos e padrões existentes no processo de internamento hospitalar, com base em técnicas de DM. A concepção de um modelo explicativo permitiu extrair conhecimento útil para a área de negócio hospitalar, possibilitando no futuro, a execução de um processo de internamento mais eficiente, otimizando o número de camas existentes no contexto hospitalar e evitando erros ou desvios no planeamento dos internamentos.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2013-09
2014-12-11T18:02:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/8078
TID:201047845
url http://hdl.handle.net/10071/8078
identifier_str_mv TID:201047845
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597187285581824