Optimal Imputation Methods under Stratified Ranked Set Sampling
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.57805/revstat.v23i1.501 |
Summary: | It is long familiar that the stratified ranked set sampling (SRSS) is more efficient than ranked set sampling (RSS) and stratified random sampling (StRS). The existence of missing values alter the final inference of any study. This paper is fundamental effort to suggest some combined and separate imputation methods in presence of missing data under SRSS. It has been shown that the proposed imputation methods become superior than the mean imputation method, ratio imputation method, Diana and Perri (2010) type imputation method and Sohail et al. (2018) type imputation methods. A simulation study is administered over two hypothetically drawn asymmetric populations. |
id |
RCAP_8a24f37cc64697713e45f1980c92352e |
---|---|
oai_identifier_str |
oai:revstat:article/501 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Optimal Imputation Methods under Stratified Ranked Set Samplingmissing valuesimputationstratified ranked set samplingIt is long familiar that the stratified ranked set sampling (SRSS) is more efficient than ranked set sampling (RSS) and stratified random sampling (StRS). The existence of missing values alter the final inference of any study. This paper is fundamental effort to suggest some combined and separate imputation methods in presence of missing data under SRSS. It has been shown that the proposed imputation methods become superior than the mean imputation method, ratio imputation method, Diana and Perri (2010) type imputation method and Sohail et al. (2018) type imputation methods. A simulation study is administered over two hypothetically drawn asymmetric populations.Statistics Portugal2025-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://doi.org/10.57805/revstat.v23i1.501https://doi.org/10.57805/revstat.v23i1.501REVSTAT-Statistical Journal; Vol. 23 No. 1 (2025): REVSTAT - Statistical Journal; 53-77REVSTAT; Vol. 23 N.º 1 (2025): REVSTAT - Statistical Journal; 53-772183-03711645-6726reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/501https://revstat.ine.pt/index.php/REVSTAT/article/view/501/766https://revstat.ine.pt/index.php/REVSTAT/article/view/501/595Copyright (c) 2025 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessBhushan , ShashiKumar , Anoop2025-02-08T06:30:26Zoai:revstat:article/501Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:46:37.139544Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
title |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
spellingShingle |
Optimal Imputation Methods under Stratified Ranked Set Sampling Bhushan , Shashi missing values imputation stratified ranked set sampling |
title_short |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
title_full |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
title_fullStr |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
title_full_unstemmed |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
title_sort |
Optimal Imputation Methods under Stratified Ranked Set Sampling |
author |
Bhushan , Shashi |
author_facet |
Bhushan , Shashi Kumar , Anoop |
author_role |
author |
author2 |
Kumar , Anoop |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bhushan , Shashi Kumar , Anoop |
dc.subject.por.fl_str_mv |
missing values imputation stratified ranked set sampling |
topic |
missing values imputation stratified ranked set sampling |
description |
It is long familiar that the stratified ranked set sampling (SRSS) is more efficient than ranked set sampling (RSS) and stratified random sampling (StRS). The existence of missing values alter the final inference of any study. This paper is fundamental effort to suggest some combined and separate imputation methods in presence of missing data under SRSS. It has been shown that the proposed imputation methods become superior than the mean imputation method, ratio imputation method, Diana and Perri (2010) type imputation method and Sohail et al. (2018) type imputation methods. A simulation study is administered over two hypothetically drawn asymmetric populations. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v23i1.501 https://doi.org/10.57805/revstat.v23i1.501 |
url |
https://doi.org/10.57805/revstat.v23i1.501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/501 https://revstat.ine.pt/index.php/REVSTAT/article/view/501/766 https://revstat.ine.pt/index.php/REVSTAT/article/view/501/595 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2025 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2025 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 23 No. 1 (2025): REVSTAT - Statistical Journal; 53-77 REVSTAT; Vol. 23 N.º 1 (2025): REVSTAT - Statistical Journal; 53-77 2183-0371 1645-6726 reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598318458961920 |