Forecasting store foot traffic using facial recognition, time series and support vector machines

Bibliographic Details
Main Author: Cortez, Paulo
Publication Date: 2017
Other Authors: Matos, Luis Miguel Rocha, Pereira, Pedro José, Santos, Nuno, Duque, Duarte
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/43068
Summary: In this paper, we explore data collected in a pilot project that used a digital camera and facial recognition to detect foot traffic to a sports store. Using a time series approach, we model daily incoming store traffic under three classes (all faces, female, male) and compare six forecasting approaches, including Holt-Winters (HW), a Support Vector Machine (SVM) and a HW-SVM hybrid that includes other data features (e.g., weather conditions). Several experiments were held, under a robust rolling windows scheme that considers up to one week ahead predictions and two metrics (predictive error and estimated store benefit). Overall, competitive results were achieved by the SVM (all faces), HW (female) and HW-SVM (male) methods, which can potentially lead to valuable gains (e.g., enhancing store marketing or human resource management).
id RCAP_87b058f9e15a3233f36d3aad0a310e87
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/43068
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Forecasting store foot traffic using facial recognition, time series and support vector machinesData miningFacial recognitionTime series forecastingSupport vector machineEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyIn this paper, we explore data collected in a pilot project that used a digital camera and facial recognition to detect foot traffic to a sports store. Using a time series approach, we model daily incoming store traffic under three classes (all faces, female, male) and compare six forecasting approaches, including Holt-Winters (HW), a Support Vector Machine (SVM) and a HW-SVM hybrid that includes other data features (e.g., weather conditions). Several experiments were held, under a robust rolling windows scheme that considers up to one week ahead predictions and two metrics (predictive error and estimated store benefit). Overall, competitive results were achieved by the SVM (all faces), HW (female) and HW-SVM (male) methods, which can potentially lead to valuable gains (e.g., enhancing store marketing or human resource management).This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013.SpringerUniversidade do MinhoCortez, PauloMatos, Luis Miguel RochaPereira, Pedro JoséSantos, NunoDuque, Duarte20172017-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/43068eng978-3-319-47363-52194-535710.1007/978-3-319-47364-2_26The original publication is available at http://link.springer.com/chapter/10.1007/978-3-319-47364-2_26info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:59:47Zoai:repositorium.sdum.uminho.pt:1822/43068Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:04:57.065608Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Forecasting store foot traffic using facial recognition, time series and support vector machines
title Forecasting store foot traffic using facial recognition, time series and support vector machines
spellingShingle Forecasting store foot traffic using facial recognition, time series and support vector machines
Cortez, Paulo
Data mining
Facial recognition
Time series forecasting
Support vector machine
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
title_short Forecasting store foot traffic using facial recognition, time series and support vector machines
title_full Forecasting store foot traffic using facial recognition, time series and support vector machines
title_fullStr Forecasting store foot traffic using facial recognition, time series and support vector machines
title_full_unstemmed Forecasting store foot traffic using facial recognition, time series and support vector machines
title_sort Forecasting store foot traffic using facial recognition, time series and support vector machines
author Cortez, Paulo
author_facet Cortez, Paulo
Matos, Luis Miguel Rocha
Pereira, Pedro José
Santos, Nuno
Duque, Duarte
author_role author
author2 Matos, Luis Miguel Rocha
Pereira, Pedro José
Santos, Nuno
Duque, Duarte
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cortez, Paulo
Matos, Luis Miguel Rocha
Pereira, Pedro José
Santos, Nuno
Duque, Duarte
dc.subject.por.fl_str_mv Data mining
Facial recognition
Time series forecasting
Support vector machine
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
topic Data mining
Facial recognition
Time series forecasting
Support vector machine
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
description In this paper, we explore data collected in a pilot project that used a digital camera and facial recognition to detect foot traffic to a sports store. Using a time series approach, we model daily incoming store traffic under three classes (all faces, female, male) and compare six forecasting approaches, including Holt-Winters (HW), a Support Vector Machine (SVM) and a HW-SVM hybrid that includes other data features (e.g., weather conditions). Several experiments were held, under a robust rolling windows scheme that considers up to one week ahead predictions and two metrics (predictive error and estimated store benefit). Overall, competitive results were achieved by the SVM (all faces), HW (female) and HW-SVM (male) methods, which can potentially lead to valuable gains (e.g., enhancing store marketing or human resource management).
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/43068
url http://hdl.handle.net/1822/43068
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-319-47363-5
2194-5357
10.1007/978-3-319-47364-2_26
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-319-47364-2_26
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595087013019648