Global bifurcations close to symmetry

Bibliographic Details
Main Author: Isabel S Labouriau
Publication Date: 2016
Other Authors: Alexandre A P Rodrigues
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/90693
Summary: Heteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n + 1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions.
id RCAP_878c6cce2013916f0ce243e868cf714f
oai_identifier_str oai:repositorio-aberto.up.pt:10216/90693
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Global bifurcations close to symmetryHeteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n + 1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90693eng0022-247X10.1016/j.jmaa.2016.06.032Isabel S LabouriauAlexandre A P Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:40:10Zoai:repositorio-aberto.up.pt:10216/90693Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:55:16.033925Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Global bifurcations close to symmetry
title Global bifurcations close to symmetry
spellingShingle Global bifurcations close to symmetry
Isabel S Labouriau
title_short Global bifurcations close to symmetry
title_full Global bifurcations close to symmetry
title_fullStr Global bifurcations close to symmetry
title_full_unstemmed Global bifurcations close to symmetry
title_sort Global bifurcations close to symmetry
author Isabel S Labouriau
author_facet Isabel S Labouriau
Alexandre A P Rodrigues
author_role author
author2 Alexandre A P Rodrigues
author2_role author
dc.contributor.author.fl_str_mv Isabel S Labouriau
Alexandre A P Rodrigues
description Heteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n + 1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/90693
url https://hdl.handle.net/10216/90693
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2016.06.032
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599931548434432