Exportação concluída — 

Earthquake loss estimation for the Kathmandu Valley

Detalhes bibliográficos
Autor(a) principal: Chaulagain, Hemchandra
Data de Publicação: 2014
Outros Autores: Silva, Vitor, Rodrigues, Hugo, Spacone, Enrico, Varum, Humberto
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/12675
Resumo: The capital city, Kathmandu, is the most developed and populated place in Nepal. The majority of the administrative offices, headquarters, numerous historical monuments, and eight World Heritages sites are in the Kathmandu Valley. However, this region is geologically located on lacustrine sediment basin, characterized by a long history of destructive earthquakes. The past events resulted in great damage of structures, losses of human life’s and property, and interrupted the social development. Therefore, earthquake disaster management is one of the most serious issues in highly seismically active regions such as the Kathmandu Valley. In recent years, the earthquake risk in this area has significantly increased due to uncontrolled development, poor construction practices with no earthquake safety consideration, and lack of awareness amongst the general public and government authorities. In this context, this study explores the realistic situation of earthquake losses due to future earthquakes in Kathmandu Valley. To this end, three municipalities: (a) Kathmandu metropolitan city (KMC), (b) Lalitpur Sub-Metropolitan City (LSMC) and (c) Bhaktapur Municipality (BMC) are selected for study. The earthquake loss estimation in the selected municipalities is performed through the combination of seismic hazard, structural vulnerability, and exposure data. For what concerns the seismic input, various earthquake scenarios considering four seismic sources in Nepal were adopted. Regarding the exposure, data about the type of existing buildings, population, and ward level distribution of building typologies is estimated from the recent national census survey of 2011. The economic losses due to the scenario earthquakes are determined using fragility functions. The commonly used standard fragility curves are adopted for adobe, brick/stone with mud mortar buildings, and brick/stone with cement mortar buildings. For the reinforced concrete structures, a new fragility model was derived considering four construction typologies: i) current construction practices (CCP), ii) structures according to the Nepal buildings code (NBC), iii) structures according to the modified Nepal building code (NBC+) and iv) well designed structures (WDS). In this study, a set of fragility functions is converted into a vulnerability model through a consequences model. Finally, the ward level distribution of damage for each building typology, building losses and the corresponding economic loss for each scenario earthquake is obtained using the OpenQuake-engine. The distribution of damage within the Kathmandu Valley is currently being employing in the development of a shelter model for the region, involving various local authorities and decision makers.
id RCAP_86f376e8e62dc66e6fde5115d4a413c4
oai_identifier_str oai:ria.ua.pt:10773/12675
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Earthquake loss estimation for the Kathmandu ValleyNepalese buildingsKathmandu ValleyScenario earthquakeFragility curvesThe capital city, Kathmandu, is the most developed and populated place in Nepal. The majority of the administrative offices, headquarters, numerous historical monuments, and eight World Heritages sites are in the Kathmandu Valley. However, this region is geologically located on lacustrine sediment basin, characterized by a long history of destructive earthquakes. The past events resulted in great damage of structures, losses of human life’s and property, and interrupted the social development. Therefore, earthquake disaster management is one of the most serious issues in highly seismically active regions such as the Kathmandu Valley. In recent years, the earthquake risk in this area has significantly increased due to uncontrolled development, poor construction practices with no earthquake safety consideration, and lack of awareness amongst the general public and government authorities. In this context, this study explores the realistic situation of earthquake losses due to future earthquakes in Kathmandu Valley. To this end, three municipalities: (a) Kathmandu metropolitan city (KMC), (b) Lalitpur Sub-Metropolitan City (LSMC) and (c) Bhaktapur Municipality (BMC) are selected for study. The earthquake loss estimation in the selected municipalities is performed through the combination of seismic hazard, structural vulnerability, and exposure data. For what concerns the seismic input, various earthquake scenarios considering four seismic sources in Nepal were adopted. Regarding the exposure, data about the type of existing buildings, population, and ward level distribution of building typologies is estimated from the recent national census survey of 2011. The economic losses due to the scenario earthquakes are determined using fragility functions. The commonly used standard fragility curves are adopted for adobe, brick/stone with mud mortar buildings, and brick/stone with cement mortar buildings. For the reinforced concrete structures, a new fragility model was derived considering four construction typologies: i) current construction practices (CCP), ii) structures according to the Nepal buildings code (NBC), iii) structures according to the modified Nepal building code (NBC+) and iv) well designed structures (WDS). In this study, a set of fragility functions is converted into a vulnerability model through a consequences model. Finally, the ward level distribution of damage for each building typology, building losses and the corresponding economic loss for each scenario earthquake is obtained using the OpenQuake-engine. The distribution of damage within the Kathmandu Valley is currently being employing in the development of a shelter model for the region, involving various local authorities and decision makers.2014-10-16T17:15:31Z2014-08-01T00:00:00Z2014-08conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/12675engChaulagain, HemchandraSilva, VitorRodrigues, HugoSpacone, EnricoVarum, Humbertoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:51:12Zoai:ria.ua.pt:10773/12675Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:48:43.569663Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Earthquake loss estimation for the Kathmandu Valley
title Earthquake loss estimation for the Kathmandu Valley
spellingShingle Earthquake loss estimation for the Kathmandu Valley
Chaulagain, Hemchandra
Nepalese buildings
Kathmandu Valley
Scenario earthquake
Fragility curves
title_short Earthquake loss estimation for the Kathmandu Valley
title_full Earthquake loss estimation for the Kathmandu Valley
title_fullStr Earthquake loss estimation for the Kathmandu Valley
title_full_unstemmed Earthquake loss estimation for the Kathmandu Valley
title_sort Earthquake loss estimation for the Kathmandu Valley
author Chaulagain, Hemchandra
author_facet Chaulagain, Hemchandra
Silva, Vitor
Rodrigues, Hugo
Spacone, Enrico
Varum, Humberto
author_role author
author2 Silva, Vitor
Rodrigues, Hugo
Spacone, Enrico
Varum, Humberto
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Chaulagain, Hemchandra
Silva, Vitor
Rodrigues, Hugo
Spacone, Enrico
Varum, Humberto
dc.subject.por.fl_str_mv Nepalese buildings
Kathmandu Valley
Scenario earthquake
Fragility curves
topic Nepalese buildings
Kathmandu Valley
Scenario earthquake
Fragility curves
description The capital city, Kathmandu, is the most developed and populated place in Nepal. The majority of the administrative offices, headquarters, numerous historical monuments, and eight World Heritages sites are in the Kathmandu Valley. However, this region is geologically located on lacustrine sediment basin, characterized by a long history of destructive earthquakes. The past events resulted in great damage of structures, losses of human life’s and property, and interrupted the social development. Therefore, earthquake disaster management is one of the most serious issues in highly seismically active regions such as the Kathmandu Valley. In recent years, the earthquake risk in this area has significantly increased due to uncontrolled development, poor construction practices with no earthquake safety consideration, and lack of awareness amongst the general public and government authorities. In this context, this study explores the realistic situation of earthquake losses due to future earthquakes in Kathmandu Valley. To this end, three municipalities: (a) Kathmandu metropolitan city (KMC), (b) Lalitpur Sub-Metropolitan City (LSMC) and (c) Bhaktapur Municipality (BMC) are selected for study. The earthquake loss estimation in the selected municipalities is performed through the combination of seismic hazard, structural vulnerability, and exposure data. For what concerns the seismic input, various earthquake scenarios considering four seismic sources in Nepal were adopted. Regarding the exposure, data about the type of existing buildings, population, and ward level distribution of building typologies is estimated from the recent national census survey of 2011. The economic losses due to the scenario earthquakes are determined using fragility functions. The commonly used standard fragility curves are adopted for adobe, brick/stone with mud mortar buildings, and brick/stone with cement mortar buildings. For the reinforced concrete structures, a new fragility model was derived considering four construction typologies: i) current construction practices (CCP), ii) structures according to the Nepal buildings code (NBC), iii) structures according to the modified Nepal building code (NBC+) and iv) well designed structures (WDS). In this study, a set of fragility functions is converted into a vulnerability model through a consequences model. Finally, the ward level distribution of damage for each building typology, building losses and the corresponding economic loss for each scenario earthquake is obtained using the OpenQuake-engine. The distribution of damage within the Kathmandu Valley is currently being employing in the development of a shelter model for the region, involving various local authorities and decision makers.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-16T17:15:31Z
2014-08-01T00:00:00Z
2014-08
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/12675
url http://hdl.handle.net/10773/12675
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594087222018048