Clustering algorithms for fuzzy rules decomposition
| Main Author: | |
|---|---|
| Publication Date: | 2007 |
| Other Authors: | |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10198/2757 |
Summary: | This paper presents the development, testing and evaluation of generalized Possibilistic fuzzy c-means (FCM) algorithms applied to fuzzy sets. Clustering is formulated as a constrained minimization problem, whose solution depends on the constraints imposed on the membership function of the cluster and on the relevance measure of the fuzzy rules. This fuzzy clustering of fuzzy rules leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to the clustering of a flat fuzzy system results a set of decomposed sub-systems that will be conveniently linked into a Hierarchical Prioritized Structures. |
| id |
RCAP_86d7a0e96b7ff8c795bd3effd5533114 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/2757 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Clustering algorithms for fuzzy rules decompositionFuzzy clusteringRules decompositionThis paper presents the development, testing and evaluation of generalized Possibilistic fuzzy c-means (FCM) algorithms applied to fuzzy sets. Clustering is formulated as a constrained minimization problem, whose solution depends on the constraints imposed on the membership function of the cluster and on the relevance measure of the fuzzy rules. This fuzzy clustering of fuzzy rules leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to the clustering of a flat fuzzy system results a set of decomposed sub-systems that will be conveniently linked into a Hierarchical Prioritized Structures.Biblioteca Digital do IPBSalgado, PauloIgrejas, Getúlio2010-11-09T15:54:13Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/2757engSalgado, Paulo; Igrejas, Getúlio (2007). Clustering algorithms for fuzzy rules decomposition. In Proceedings of the UK Computational Intelligence Workshop. Londoninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:15Zoai:bibliotecadigital.ipb.pt:10198/2757Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:16:47.487989Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Clustering algorithms for fuzzy rules decomposition |
| title |
Clustering algorithms for fuzzy rules decomposition |
| spellingShingle |
Clustering algorithms for fuzzy rules decomposition Salgado, Paulo Fuzzy clustering Rules decomposition |
| title_short |
Clustering algorithms for fuzzy rules decomposition |
| title_full |
Clustering algorithms for fuzzy rules decomposition |
| title_fullStr |
Clustering algorithms for fuzzy rules decomposition |
| title_full_unstemmed |
Clustering algorithms for fuzzy rules decomposition |
| title_sort |
Clustering algorithms for fuzzy rules decomposition |
| author |
Salgado, Paulo |
| author_facet |
Salgado, Paulo Igrejas, Getúlio |
| author_role |
author |
| author2 |
Igrejas, Getúlio |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
| dc.contributor.author.fl_str_mv |
Salgado, Paulo Igrejas, Getúlio |
| dc.subject.por.fl_str_mv |
Fuzzy clustering Rules decomposition |
| topic |
Fuzzy clustering Rules decomposition |
| description |
This paper presents the development, testing and evaluation of generalized Possibilistic fuzzy c-means (FCM) algorithms applied to fuzzy sets. Clustering is formulated as a constrained minimization problem, whose solution depends on the constraints imposed on the membership function of the cluster and on the relevance measure of the fuzzy rules. This fuzzy clustering of fuzzy rules leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to the clustering of a flat fuzzy system results a set of decomposed sub-systems that will be conveniently linked into a Hierarchical Prioritized Structures. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2010-11-09T15:54:13Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/2757 |
| url |
http://hdl.handle.net/10198/2757 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Salgado, Paulo; Igrejas, Getúlio (2007). Clustering algorithms for fuzzy rules decomposition. In Proceedings of the UK Computational Intelligence Workshop. London |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833591755460575232 |