Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network

Detalhes bibliográficos
Autor(a) principal: Ginoris, Y. P.
Data de Publicação: 2006
Outros Autores: Amaral, A. L., Nicolau, Ana, Ferreira, Eugénio C., Coelho, M. A. Z.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/1822/5599
Resumo: A mixed culture of microorganisms is usually present in biological wastewater treatment processes such as the activated sludge system in aeration tanks. These microorganisms are capable of reducing the organic matter and other pollutants in the sewage. Protozoa and metazoa play an important role in this system because they maintain the density of bacterial populations by predation and contribute to the flocculation process, being responsible for an mprovement in the quality of the effluent. Moreover, protozoa and metazoa are considered to be important bioindicators of the activated sludge process due to their association with physical, chemical and operational parameters of the treatment plant. Furthermore, the analysis of the number and classes of the predominant groups of these organisms is used to predict the effectiveness of the aeration, extent of the nitrification process, sludge age and final effluent conditions1,2. Classical microfauna analysis is frequently done by microscopic observation and assessment of the different protozoa and metazoa species present. However, this task is not only timeconsuming and labour intensive but also requires the expertise of a zoologist or protozoologist. Therefore, digital image analysis can be seen as a useful tool to achieve taxonomic classification and organism’s quantification in an automatic, non subjective manner. Some studies have already been carried out using this technique combined with statistic multivariable analysis such as Neural Networks, Discriminant Analysis, and Principal Components Analysis to perform the recognition of protozoa and metazoa commonly present in the aeration tank of wastewater treatment plants activated sludge, including the works of Amaral et al. (2004)3. In this work an image analysis programme was developed in MATLAB code for the semi-automatic recognition of several groups of protozoa and metazoa commonly present in wastewater treatment plants. The protozoa and metazoa were characterized by different morphological parameters of Euclidean and fractal geometry, with or without their external structures (peduncles, cirri, tentacles). Finally, the morphological parameters (around 40) of the above-mentioned geometries were analysed using the multivariable statistical techniques Discriminant Analysis and Neural Network to identify and classify each protozoan or metazoan image. The procedure obtained was adequate for distinguishing between amoebas, sessile ciliates, crawling ciliates, large flagellates and free swimming ciliates in terms of the protozoa classes and also for the metazoa. Furthermore, with the exception of some sessile species, the value of overall species recognition was high. In terms of the wastewater conditions assessment such as aeration, nitrification, sludge age and effluent quality the obtained results were found to be suitable for the prediction of these conditions.
id RCAP_85aaa2fc804cbb94cf3ca19fc9172c66
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/5599
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural networkProtozoaMetazoaRecognitionA mixed culture of microorganisms is usually present in biological wastewater treatment processes such as the activated sludge system in aeration tanks. These microorganisms are capable of reducing the organic matter and other pollutants in the sewage. Protozoa and metazoa play an important role in this system because they maintain the density of bacterial populations by predation and contribute to the flocculation process, being responsible for an mprovement in the quality of the effluent. Moreover, protozoa and metazoa are considered to be important bioindicators of the activated sludge process due to their association with physical, chemical and operational parameters of the treatment plant. Furthermore, the analysis of the number and classes of the predominant groups of these organisms is used to predict the effectiveness of the aeration, extent of the nitrification process, sludge age and final effluent conditions1,2. Classical microfauna analysis is frequently done by microscopic observation and assessment of the different protozoa and metazoa species present. However, this task is not only timeconsuming and labour intensive but also requires the expertise of a zoologist or protozoologist. Therefore, digital image analysis can be seen as a useful tool to achieve taxonomic classification and organism’s quantification in an automatic, non subjective manner. Some studies have already been carried out using this technique combined with statistic multivariable analysis such as Neural Networks, Discriminant Analysis, and Principal Components Analysis to perform the recognition of protozoa and metazoa commonly present in the aeration tank of wastewater treatment plants activated sludge, including the works of Amaral et al. (2004)3. In this work an image analysis programme was developed in MATLAB code for the semi-automatic recognition of several groups of protozoa and metazoa commonly present in wastewater treatment plants. The protozoa and metazoa were characterized by different morphological parameters of Euclidean and fractal geometry, with or without their external structures (peduncles, cirri, tentacles). Finally, the morphological parameters (around 40) of the above-mentioned geometries were analysed using the multivariable statistical techniques Discriminant Analysis and Neural Network to identify and classify each protozoan or metazoan image. The procedure obtained was adequate for distinguishing between amoebas, sessile ciliates, crawling ciliates, large flagellates and free swimming ciliates in terms of the protozoa classes and also for the metazoa. Furthermore, with the exception of some sessile species, the value of overall species recognition was high. In terms of the wastewater conditions assessment such as aeration, nitrification, sludge age and effluent quality the obtained results were found to be suitable for the prediction of these conditions.ALFA cooperation project; the Biological Engineering Department of Minho University; Chemistry School – Federal University of Rio de Janeiro.Universidade do MinhoGinoris, Y. P.Amaral, A. L.Nicolau, AnaFerreira, Eugénio C.Coelho, M. A. Z.2006-09-102006-09-10T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/5599engINTERNATIONAL CONFERENCE CHEMOMETRICS IN ANALYTICAL CHEMISTRY, 10, Águas de Lindóia, 2006 - "CAC2006 - International Conference Chemometrics in Analytical Chemistry". [S.l. : s.n., 2006]info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:03:00Zoai:repositorium.sdum.uminho.pt:1822/5599Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:06:28.884092Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
title Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
spellingShingle Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
Ginoris, Y. P.
Protozoa
Metazoa
Recognition
title_short Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
title_full Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
title_fullStr Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
title_full_unstemmed Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
title_sort Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network
author Ginoris, Y. P.
author_facet Ginoris, Y. P.
Amaral, A. L.
Nicolau, Ana
Ferreira, Eugénio C.
Coelho, M. A. Z.
author_role author
author2 Amaral, A. L.
Nicolau, Ana
Ferreira, Eugénio C.
Coelho, M. A. Z.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ginoris, Y. P.
Amaral, A. L.
Nicolau, Ana
Ferreira, Eugénio C.
Coelho, M. A. Z.
dc.subject.por.fl_str_mv Protozoa
Metazoa
Recognition
topic Protozoa
Metazoa
Recognition
description A mixed culture of microorganisms is usually present in biological wastewater treatment processes such as the activated sludge system in aeration tanks. These microorganisms are capable of reducing the organic matter and other pollutants in the sewage. Protozoa and metazoa play an important role in this system because they maintain the density of bacterial populations by predation and contribute to the flocculation process, being responsible for an mprovement in the quality of the effluent. Moreover, protozoa and metazoa are considered to be important bioindicators of the activated sludge process due to their association with physical, chemical and operational parameters of the treatment plant. Furthermore, the analysis of the number and classes of the predominant groups of these organisms is used to predict the effectiveness of the aeration, extent of the nitrification process, sludge age and final effluent conditions1,2. Classical microfauna analysis is frequently done by microscopic observation and assessment of the different protozoa and metazoa species present. However, this task is not only timeconsuming and labour intensive but also requires the expertise of a zoologist or protozoologist. Therefore, digital image analysis can be seen as a useful tool to achieve taxonomic classification and organism’s quantification in an automatic, non subjective manner. Some studies have already been carried out using this technique combined with statistic multivariable analysis such as Neural Networks, Discriminant Analysis, and Principal Components Analysis to perform the recognition of protozoa and metazoa commonly present in the aeration tank of wastewater treatment plants activated sludge, including the works of Amaral et al. (2004)3. In this work an image analysis programme was developed in MATLAB code for the semi-automatic recognition of several groups of protozoa and metazoa commonly present in wastewater treatment plants. The protozoa and metazoa were characterized by different morphological parameters of Euclidean and fractal geometry, with or without their external structures (peduncles, cirri, tentacles). Finally, the morphological parameters (around 40) of the above-mentioned geometries were analysed using the multivariable statistical techniques Discriminant Analysis and Neural Network to identify and classify each protozoan or metazoan image. The procedure obtained was adequate for distinguishing between amoebas, sessile ciliates, crawling ciliates, large flagellates and free swimming ciliates in terms of the protozoa classes and also for the metazoa. Furthermore, with the exception of some sessile species, the value of overall species recognition was high. In terms of the wastewater conditions assessment such as aeration, nitrification, sludge age and effluent quality the obtained results were found to be suitable for the prediction of these conditions.
publishDate 2006
dc.date.none.fl_str_mv 2006-09-10
2006-09-10T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/5599
url https://hdl.handle.net/1822/5599
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv INTERNATIONAL CONFERENCE CHEMOMETRICS IN ANALYTICAL CHEMISTRY, 10, Águas de Lindóia, 2006 - "CAC2006 - International Conference Chemometrics in Analytical Chemistry". [S.l. : s.n., 2006]
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595104417284096