Exploiting low-rank approximations of kernel matrics in denoising applicationS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.26/47374 |
Resumo: | The eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches. |
id |
RCAP_856e88ecbc1bbf94035b1165a528ed9f |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47374 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Exploiting low-rank approximations of kernel matrics in denoising applicationSThe eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.IEEERepositório ComumTeixeira, AnaTomé, A. M.Lang, E.W.2023-10-20T14:16:50Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/47374enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:24:39Zoai:comum.rcaap.pt:10400.26/47374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:44:57.608703Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
title |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
spellingShingle |
Exploiting low-rank approximations of kernel matrics in denoising applicationS Teixeira, Ana |
title_short |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
title_full |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
title_fullStr |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
title_full_unstemmed |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
title_sort |
Exploiting low-rank approximations of kernel matrics in denoising applicationS |
author |
Teixeira, Ana |
author_facet |
Teixeira, Ana Tomé, A. M. Lang, E.W. |
author_role |
author |
author2 |
Tomé, A. M. Lang, E.W. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Teixeira, Ana Tomé, A. M. Lang, E.W. |
description |
The eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2023-10-20T14:16:50Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47374 |
url |
http://hdl.handle.net/10400.26/47374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602771764379648 |