Exploiting low-rank approximations of kernel matrics in denoising applicationS

Detalhes bibliográficos
Autor(a) principal: Teixeira, Ana
Data de Publicação: 2007
Outros Autores: Tomé, A. M., Lang, E.W.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.26/47374
Resumo: The eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.
id RCAP_856e88ecbc1bbf94035b1165a528ed9f
oai_identifier_str oai:comum.rcaap.pt:10400.26/47374
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Exploiting low-rank approximations of kernel matrics in denoising applicationSThe eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.IEEERepositório ComumTeixeira, AnaTomé, A. M.Lang, E.W.2023-10-20T14:16:50Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/47374enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:24:39Zoai:comum.rcaap.pt:10400.26/47374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:44:57.608703Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Exploiting low-rank approximations of kernel matrics in denoising applicationS
title Exploiting low-rank approximations of kernel matrics in denoising applicationS
spellingShingle Exploiting low-rank approximations of kernel matrics in denoising applicationS
Teixeira, Ana
title_short Exploiting low-rank approximations of kernel matrics in denoising applicationS
title_full Exploiting low-rank approximations of kernel matrics in denoising applicationS
title_fullStr Exploiting low-rank approximations of kernel matrics in denoising applicationS
title_full_unstemmed Exploiting low-rank approximations of kernel matrics in denoising applicationS
title_sort Exploiting low-rank approximations of kernel matrics in denoising applicationS
author Teixeira, Ana
author_facet Teixeira, Ana
Tomé, A. M.
Lang, E.W.
author_role author
author2 Tomé, A. M.
Lang, E.W.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Teixeira, Ana
Tomé, A. M.
Lang, E.W.
description The eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
2023-10-20T14:16:50Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47374
url http://hdl.handle.net/10400.26/47374
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602771764379648