Export Ready — 

System Development for Geolocation in Harsh Environments

Bibliographic Details
Main Author: Joana Maria Serra Enes
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/114152
Summary: Wireless sensor networks (WSN) consist of a set of distributed devices equipped with multiple sensors, which can be employed in different environments of varying characteristics. Nowadays, node localization has become one of their most basic and important requirements. Due to the nature of certain environments, typical positioning systems, such as Global Navigation Satellite System (GNSS), cannot be employed. Therefore, in recent years several alternative positioning mechanisms have risen. ROMOVI is a project which has as its main goal the development of low cost autonomous robots capable of monitoring and perform logistic tasks on the steep slopes of the Douro river vineyards. Integrated in this project, this dissertation proposes the development of a full-custom wireless communication system for geolocation purposes in harsh environments. Using a Symmetric Double Sided Two Way Ranging (SDS-TWR) algorithm, it is possible to achieve ranging measures between nodes, thus providing accurate relative positioning. This work focuses mainly on the study of the SDS-TWR algorithm and its major error sources, such as those due to digital clock drift, among others. A preamble based on Frank-Zadoff-Chu sequence was developed and, due to its good periodic autocorrelation properties, a system employing the transmission and reception of this preamble was implemented in hardware, through a field programmable gate array (FPGA). By employing an embedded logic processor, the Altera Nios II, control over the complete procedure of the aforementioned algorithm is possible, to perform and analyze the main advantages of the SDS-TWR algorithm. Finally, a medium access control (MAC) layer frame format was defined, in order to enable future development of communication among multiple nodes, to enhance the original algorithm and, as such, provide the capability of trilateration.
id RCAP_850f09cd0188612e03a7f3d3893b6736
oai_identifier_str oai:repositorio-aberto.up.pt:10216/114152
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling System Development for Geolocation in Harsh EnvironmentsEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringWireless sensor networks (WSN) consist of a set of distributed devices equipped with multiple sensors, which can be employed in different environments of varying characteristics. Nowadays, node localization has become one of their most basic and important requirements. Due to the nature of certain environments, typical positioning systems, such as Global Navigation Satellite System (GNSS), cannot be employed. Therefore, in recent years several alternative positioning mechanisms have risen. ROMOVI is a project which has as its main goal the development of low cost autonomous robots capable of monitoring and perform logistic tasks on the steep slopes of the Douro river vineyards. Integrated in this project, this dissertation proposes the development of a full-custom wireless communication system for geolocation purposes in harsh environments. Using a Symmetric Double Sided Two Way Ranging (SDS-TWR) algorithm, it is possible to achieve ranging measures between nodes, thus providing accurate relative positioning. This work focuses mainly on the study of the SDS-TWR algorithm and its major error sources, such as those due to digital clock drift, among others. A preamble based on Frank-Zadoff-Chu sequence was developed and, due to its good periodic autocorrelation properties, a system employing the transmission and reception of this preamble was implemented in hardware, through a field programmable gate array (FPGA). By employing an embedded logic processor, the Altera Nios II, control over the complete procedure of the aforementioned algorithm is possible, to perform and analyze the main advantages of the SDS-TWR algorithm. Finally, a medium access control (MAC) layer frame format was defined, in order to enable future development of communication among multiple nodes, to enhance the original algorithm and, as such, provide the capability of trilateration.2018-07-182018-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/114152TID:202115356engJoana Maria Serra Enesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T20:16:32Zoai:repositorio-aberto.up.pt:10216/114152Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T23:59:34.737976Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv System Development for Geolocation in Harsh Environments
title System Development for Geolocation in Harsh Environments
spellingShingle System Development for Geolocation in Harsh Environments
Joana Maria Serra Enes
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short System Development for Geolocation in Harsh Environments
title_full System Development for Geolocation in Harsh Environments
title_fullStr System Development for Geolocation in Harsh Environments
title_full_unstemmed System Development for Geolocation in Harsh Environments
title_sort System Development for Geolocation in Harsh Environments
author Joana Maria Serra Enes
author_facet Joana Maria Serra Enes
author_role author
dc.contributor.author.fl_str_mv Joana Maria Serra Enes
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description Wireless sensor networks (WSN) consist of a set of distributed devices equipped with multiple sensors, which can be employed in different environments of varying characteristics. Nowadays, node localization has become one of their most basic and important requirements. Due to the nature of certain environments, typical positioning systems, such as Global Navigation Satellite System (GNSS), cannot be employed. Therefore, in recent years several alternative positioning mechanisms have risen. ROMOVI is a project which has as its main goal the development of low cost autonomous robots capable of monitoring and perform logistic tasks on the steep slopes of the Douro river vineyards. Integrated in this project, this dissertation proposes the development of a full-custom wireless communication system for geolocation purposes in harsh environments. Using a Symmetric Double Sided Two Way Ranging (SDS-TWR) algorithm, it is possible to achieve ranging measures between nodes, thus providing accurate relative positioning. This work focuses mainly on the study of the SDS-TWR algorithm and its major error sources, such as those due to digital clock drift, among others. A preamble based on Frank-Zadoff-Chu sequence was developed and, due to its good periodic autocorrelation properties, a system employing the transmission and reception of this preamble was implemented in hardware, through a field programmable gate array (FPGA). By employing an embedded logic processor, the Altera Nios II, control over the complete procedure of the aforementioned algorithm is possible, to perform and analyze the main advantages of the SDS-TWR algorithm. Finally, a medium access control (MAC) layer frame format was defined, in order to enable future development of communication among multiple nodes, to enhance the original algorithm and, as such, provide the capability of trilateration.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-18
2018-07-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/114152
TID:202115356
url https://hdl.handle.net/10216/114152
identifier_str_mv TID:202115356
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600360831254528