Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9
Main Author: | |
---|---|
Publication Date: | 2014 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/13868 |
Summary: | This document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A. |
id |
RCAP_84eb7cc481e38d93d86eae35e35e94f1 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/13868 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9NLPArtificial IntelligenceMachine LeaningSentiment AnalysisThis document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A.Association for Computational Linguistics2015-03-31T10:58:47Z2015-03-312014-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/13868http://hdl.handle.net/10174/13868engJ. Saias, “Senti.ue: Tweet overall sentiment classification approach for semeval-2014 task 9,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 546–550, Association for Computational Linguistics and Dublin City University, August 2014. ISBN 978-1-941643-24-2.http://www.aclweb.org/anthology/S/S14/S14-2095.pdfjsaias@uevora.pt283Saias, Joséinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:59:46Zoai:dspace.uevora.pt:10174/13868Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:05:46.029168Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
spellingShingle |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 Saias, José NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
title_short |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_full |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_fullStr |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_full_unstemmed |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_sort |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
author |
Saias, José |
author_facet |
Saias, José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Saias, José |
dc.subject.por.fl_str_mv |
NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
topic |
NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
description |
This document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08-01T00:00:00Z 2015-03-31T10:58:47Z 2015-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/13868 http://hdl.handle.net/10174/13868 |
url |
http://hdl.handle.net/10174/13868 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
J. Saias, “Senti.ue: Tweet overall sentiment classification approach for semeval-2014 task 9,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 546–550, Association for Computational Linguistics and Dublin City University, August 2014. ISBN 978-1-941643-24-2. http://www.aclweb.org/anthology/S/S14/S14-2095.pdf jsaias@uevora.pt 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association for Computational Linguistics |
publisher.none.fl_str_mv |
Association for Computational Linguistics |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592507552759808 |