Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity

Bibliographic Details
Main Author: Fernández-Higuero, J.A.
Publication Date: 2015
Other Authors: Etxebarria, A., Benito-Vicente, A., Alves, A.C., Arrondo, J.L., Ostolaza, H., Bourbon, M., Martin, C.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.18/3276
Summary: Familial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.
id RCAP_846ec6da39e7f436068dbf4f180fedf9
oai_identifier_str oai:repositorio.insa.pt:10400.18/3276
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicityDoenças Cardio e Cérebro-vascularesFamilial HypercholesterolaemiaFamilial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.Nature Publishing GroupRepositório Científico do Instituto Nacional de SaúdeFernández-Higuero, J.A.Etxebarria, A.Benito-Vicente, A.Alves, A.C.Arrondo, J.L.Ostolaza, H.Bourbon, M.Martin, C.2016-02-02T16:33:07Z2015-12-082015-12-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.18/3276engdoi:10.1038/srep18184info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:15:34Zoai:repositorio.insa.pt:10400.18/3276Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:29:57.146566Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
title Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
spellingShingle Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
Fernández-Higuero, J.A.
Doenças Cardio e Cérebro-vasculares
Familial Hypercholesterolaemia
title_short Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
title_full Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
title_fullStr Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
title_full_unstemmed Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
title_sort Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity
author Fernández-Higuero, J.A.
author_facet Fernández-Higuero, J.A.
Etxebarria, A.
Benito-Vicente, A.
Alves, A.C.
Arrondo, J.L.
Ostolaza, H.
Bourbon, M.
Martin, C.
author_role author
author2 Etxebarria, A.
Benito-Vicente, A.
Alves, A.C.
Arrondo, J.L.
Ostolaza, H.
Bourbon, M.
Martin, C.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Fernández-Higuero, J.A.
Etxebarria, A.
Benito-Vicente, A.
Alves, A.C.
Arrondo, J.L.
Ostolaza, H.
Bourbon, M.
Martin, C.
dc.subject.por.fl_str_mv Doenças Cardio e Cérebro-vasculares
Familial Hypercholesterolaemia
topic Doenças Cardio e Cérebro-vasculares
Familial Hypercholesterolaemia
description Familial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-08
2015-12-08T00:00:00Z
2016-02-02T16:33:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/3276
url http://hdl.handle.net/10400.18/3276
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv doi:10.1038/srep18184
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599302776127488