Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing

Bibliographic Details
Main Author: Rufino, Ana T.
Publication Date: 2013
Other Authors: Rosa, Susana C., Judas, Fernando, Mobasheri, Ali, Lopes, M. Celeste, Mendes, Alexandrina F.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/27596
https://doi.org/10.1002/jcb.24532
Summary: ATP‐sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose‐sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels andmembrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT‐1 andGLUT‐3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia‐like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT‐1 and GLUT‐3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT‐1 and GLUT‐3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus thatmodulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes.
id RCAP_812da1555e5d269568537a3e1525ebe7
oai_identifier_str oai:estudogeral.uc.pt:10316/27596
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensingATP‐sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose‐sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels andmembrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT‐1 andGLUT‐3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia‐like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT‐1 and GLUT‐3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT‐1 and GLUT‐3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus thatmodulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes.2013-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/27596https://hdl.handle.net/10316/27596https://doi.org/10.1002/jcb.24532engRUFINO, Ana T.; ROSA, Susana C.; JUDAS, Fernando; MOBASHERI, Ali; LOPES, M. Celeste; MENDES, Alexandrina F. - Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes : possible role in glucose sensing. "Journal of Cellular Biochemistry". Vol. 114 (2013), p. 1879-1889. Disponível em: http://onlinelibrary.wiley.com/doi/10.1002/jcb.24532/pdfhttp://onlinelibrary.wiley.com/doi/10.1002/jcb.24532/pdfRufino, Ana T.Rosa, Susana C.Judas, FernandoMobasheri, AliLopes, M. CelesteMendes, Alexandrina F.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2022-05-25T06:41:53Zoai:estudogeral.uc.pt:10316/27596Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:01:12.981404Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
title Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
spellingShingle Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
Rufino, Ana T.
title_short Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
title_full Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
title_fullStr Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
title_full_unstemmed Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
title_sort Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
author Rufino, Ana T.
author_facet Rufino, Ana T.
Rosa, Susana C.
Judas, Fernando
Mobasheri, Ali
Lopes, M. Celeste
Mendes, Alexandrina F.
author_role author
author2 Rosa, Susana C.
Judas, Fernando
Mobasheri, Ali
Lopes, M. Celeste
Mendes, Alexandrina F.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Rufino, Ana T.
Rosa, Susana C.
Judas, Fernando
Mobasheri, Ali
Lopes, M. Celeste
Mendes, Alexandrina F.
description ATP‐sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose‐sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels andmembrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT‐1 andGLUT‐3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia‐like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT‐1 and GLUT‐3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT‐1 and GLUT‐3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus thatmodulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/27596
https://hdl.handle.net/10316/27596
https://doi.org/10.1002/jcb.24532
url https://hdl.handle.net/10316/27596
https://doi.org/10.1002/jcb.24532
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv RUFINO, Ana T.; ROSA, Susana C.; JUDAS, Fernando; MOBASHERI, Ali; LOPES, M. Celeste; MENDES, Alexandrina F. - Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes : possible role in glucose sensing. "Journal of Cellular Biochemistry". Vol. 114 (2013), p. 1879-1889. Disponível em: http://onlinelibrary.wiley.com/doi/10.1002/jcb.24532/pdf
http://onlinelibrary.wiley.com/doi/10.1002/jcb.24532/pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602225972183040