Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/39411 |
Summary: | Sharp bounds on the least eigenvalue of an arbitrary graph are presented. Necessary and sufficient (just sufficient) conditions for the lower (upper) bound to be attained are deduced using edge clique partitions. As an application, we prove that the least eigenvalue of the n-Queens graph Q(n) is equal to −4 for every n ≥ 4 and it is also proven that the multiplicity of this eigenvalue is (n−3)^2. Finally, edge clique partitions of additional infinite families of connected graphs and their relations with the least eigenvalues are presented. |
| id |
RCAP_8064f1eb8e482276ee290442a20dfdaf |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/39411 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitionsLeast eigenvalue of a graphEdge clique partitionn-Queens graphSharp bounds on the least eigenvalue of an arbitrary graph are presented. Necessary and sufficient (just sufficient) conditions for the lower (upper) bound to be attained are deduced using edge clique partitions. As an application, we prove that the least eigenvalue of the n-Queens graph Q(n) is equal to −4 for every n ≥ 4 and it is also proven that the multiplicity of this eigenvalue is (n−3)^2. Finally, edge clique partitions of additional infinite families of connected graphs and their relations with the least eigenvalues are presented.Springer2023-09-20T10:53:28Z2023-08-01T00:00:00Z2023-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39411eng0925-989910.1007/s10801-023-01247-1Cardoso, Domingos M.Costa, Inês SerôdioDuarte, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:47:01Zoai:ria.ua.pt:10773/39411Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:20:15.658553Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| title |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| spellingShingle |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions Cardoso, Domingos M. Least eigenvalue of a graph Edge clique partition n-Queens graph |
| title_short |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| title_full |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| title_fullStr |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| title_full_unstemmed |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| title_sort |
Sharp bounds on the least eigenvalue of a graph determined from edge clique partitions |
| author |
Cardoso, Domingos M. |
| author_facet |
Cardoso, Domingos M. Costa, Inês Serôdio Duarte, Rui |
| author_role |
author |
| author2 |
Costa, Inês Serôdio Duarte, Rui |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Cardoso, Domingos M. Costa, Inês Serôdio Duarte, Rui |
| dc.subject.por.fl_str_mv |
Least eigenvalue of a graph Edge clique partition n-Queens graph |
| topic |
Least eigenvalue of a graph Edge clique partition n-Queens graph |
| description |
Sharp bounds on the least eigenvalue of an arbitrary graph are presented. Necessary and sufficient (just sufficient) conditions for the lower (upper) bound to be attained are deduced using edge clique partitions. As an application, we prove that the least eigenvalue of the n-Queens graph Q(n) is equal to −4 for every n ≥ 4 and it is also proven that the multiplicity of this eigenvalue is (n−3)^2. Finally, edge clique partitions of additional infinite families of connected graphs and their relations with the least eigenvalues are presented. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-20T10:53:28Z 2023-08-01T00:00:00Z 2023-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39411 |
| url |
http://hdl.handle.net/10773/39411 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0925-9899 10.1007/s10801-023-01247-1 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594508746424320 |